93
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Impact of humic acid coated-TiO2 nanocomposite for fast sorption of Cd(II) and Cr(VI) from aqueous solutions

&
Pages 1338-1350 | Received 06 Feb 2023, Accepted 29 Apr 2023, Published online: 11 May 2023

References

  • Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. DOI: 10.1093/bmb/ldg032.
  • Godt J, Scheidig F, Siestrup G. C., Esche V., Brandenburg P., Reich A., Groneberg D. A. The Toxicity of Cadmium and Resulting Hazards for Human Health. J. Occup. Med. Toxicol. 2006, 1, 22. DOI: 10.1186/1745-6673-1-22.
  • Kermani, J. N.; Ghasemi, M. F.; Khosravan, A.; Farhamand, A.; Shakibaie, M. R. Cadmium Bioremediation by Metal-Resistant Mutated Bacteria Isolated from Active Sludge of Industrial Effluent. J. Environ. Health Sci. Eng. 2010, 7, 279–286.
  • Cho, D.; Chon, C.; Kim, Y.; Jeon, B.; Schwartz, F. W.; Lee, E.; Song, H. Adsorption of Nitrate and Cr(VI) by Cationic Polymer-Modified Granular Activated Carbon. Chem. Eng. J. 2011, 175, 298–305. DOI: 10.1016/j.cej.2011.09.108.
  • Nakajima, A.; Baba, Y. Mechanism of Hexavalent Chromium Adsorption by Persimmon Tannin Gel. Water Res. 2004, 38, 2859–2864. DOI: 10.1016/j.watres.2004.04.005.
  • Shaker, M. A. Thermodynamic Profile of Some Heavy Metal Ions Adsorption onto Biomaterial Surfaces. Am. J. Appl. Sci. 2007, 4, 605–612. DOI: 10.3844/ajassp.2007.605.612.
  • Shaker, M. A.; Hussein, H. M. Heavy-Metal Adsorption by Non-Living Biomass. Chem. Ecol. 2005, 21, 303–311. DOI: 10.1080/02757540500213158.
  • Carlo, N. D. Lean, Six Sigma, Alpha Books; New York, 2007.
  • Shaker, M. A.; Yakout, A. A. Optimization, Isotherm, Kinetic and Thermodynamic Studies of Pb(II) Ions Adsorption onto N-Maleated Chitosan-Immobilized TiO2 Nanoparticles from Aqueous Media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 154, 145–156. DOI: 10.1016/j.saa.2015.10.027.
  • Zhang, S. J.; Shao, T.; Bekaroglu, S. S. K.; Karanfil, T. Adsorption of Synthetic Organic Chemicals by Carbon Nanotubes: Effects of Background Solution Chemistry. Water Res. 2010, 44, 2067–2074. DOI: 10.1016/j.watres.2009.12.017.
  • Hu, X.; Chen, Q.; Jiang, L.; Yu, Z.; Jiang, D.; Yin, D. Environ. Pollut. 2011, 159, 1151–1158. DOI: 10.1016/j.envpol.2011.02.011.
  • Amin, M. T.; Alazba, A. A.; Manzoor, U. A Review on Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 1–24. DOI: 10.1155/2014/825910.
  • Hu, X. L.; Liu, J. F.; Mayer, P.; Jiang, G. Impacts of Some Environmentally Relevant Parameters on the Sorption of Polycyclic Aromatic Hydrocarbons to Aqueous Suspensions of Fullerene. Environ. Toxicol. Chem. 2008, 27, 1868–1874. DOI: 10.1897/08-009.1.
  • Savage, N.; Diallo, M. S. J. Nanopart. Res. 2005, 7, 331–342. DOI: 10.1007/s11051-005-7523-5.
  • Shaker, M. A. Thermodynamics and Kinetics of Bivalent Cadmium Biosorption onto Nanoparticles of Chitosan-Based Biopolymers. J. Taiwan Inst. Chem. Eng. 2015, 47, 79–90. DOI: 10.1016/j.jtice.2014.10.010.
  • Shaker, M. A. Adsorption of Co(II), Ni(II) and Cu(II) Ions onto Chitosan-Modified Poly(Methacrylate) Nanoparticles: Dynamics, Equilibrium and Thermodynamics Studies. J. Taiwan Inst. Chem. Eng. 2015, 57, 111–122. DOI: 10.1016/j.jtice.2015.05.027.
  • Shaker, M. A. Equilibrium, Kinetics and Thermodynamics Studies of Chitosan-Based Solid Phase Nanoparticles as Sorbent for Lead (II) Cations from Aqueous Solution. Mater. Chem. Phys. 2015, 162, 580–591. DOI: 10.1016/j.matchemphys.2015.06.032.
  • Yakout, A. A.; Albishri, H. M. Solvothermal Synthesis of EDTA-Functionalized Magnetite-Carboxylated Graphene Oxide Nanocomposite as a Potential Magnetic Solid Phase Extractor of p-Phenylenediamine from Environmental Samples. J. Dispersion Sci. Technol. 2019, 40, 369–377. DOI: 10.1080/01932691.2018.1469415.
  • Song, Y.; Wang, Q.; Yang, W.; Chen, Q.; Zhou, Y.; Zhou, L. Chitosan-Nickel Oxide Composite as an Efficient Adsorbent for Removal of Coungo Red from Aqueous Solution. J. Dispersion Sci. Technol. 2022, 43, 1689–1699. DOI: 10.1080/01932691.2021.1878901.
  • Ghabbour, E. A.; Shaker, M.; El-Toukhy, A.; Abid, I. M.; Davies, G. Thermodynamics of Metal Cation Binding by a Solid Soil-Derived Humic Acid: Binding of Fe(III), Pb(II), and Cu(II.) Chemosphere 2006, 63, 477–483. DOI: 10.1016/j.chemosphere.2005.08.049.
  • Ghabbour, E. A.; Shaker, M.; El-Toukhy, A.; Abid, I. M.; Davies, G. Thermodynamics of Metal Cation Binding by a Solid Soil Derived Humic Acid. 2. Binding of Mn(II), Co(NH3)6aq3+ and Hg(II.) Chemosphere 2006, 64, 826–833. DOI: 10.1016/j.chemosphere.2005.10.049.
  • Shaker, M. A.; Albishri, H. M. Dynamics and Thermodynamics of Toxic Metals Adsorption onto Soil-Extracted Humic Acid. Chemosphere 2014, 111, 587–595. DOI: 10.1016/j.chemosphere.2014.04.088.
  • Shaker, M. A.; Yakout, A. A.; El-Hady, D. A.; Abdel-Salam, A. H.; Albishri, H. M. Equilibrium and Kinetic Study of Pepcidine Adsorption onto Humic Acid-Coated Nanoparticles. Asian J. Chem. 2015, 27, 4397–4400. DOI: 10.14233/ajchem.2015.19142.
  • Tony, M. A. Low-Cost Adsorbents for Environmental Pollution Control: A Concise Systematic Review from the Prospective of Principles, Mechanism and Their Applications. J. Dispersion Sci. Technol. 2022, 43, 1612–1633. DOI: 10.1080/01932691.2021.1878037.
  • Song, J.; Yu, J.; Wang, W.; Mi, N.; Wei, W.; Li, S.; Zhang, Y. Enhanced Adsorption of Roxarsone onto Humic Acid Modified Goethite from Aqueous Solution. J. Dispersion Sci. Technol. 2019, 40, 25–32. DOI: 10.1080/01932691.2018.1464464.
  • Yang, K.; Xing, B. S. Sorption of Phenanthrene by Humic Acid-Coated Nanosized TiO2 and ZnO. Environ. Sci. Technol. 2009, 43, 1845–1851. DOI: 10.1021/es802880m.
  • Wang, J. H.; Zheng, S. R.; Shao, Y.; Liu, J. L.; Xu, Z. Y.; Zhu, D. Q. Amino-Functionalized Fe3O4@SiO2 Core–Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J. Colloid Interface Sci. 2010, 349, 293–299. DOI: 10.1016/j.jcis.2010.05.010.
  • Liu, J. F.; Zhao, Z. S.; Jiang, G. B. Coating Fe3O4 Magnetic Nanoparticles with Humic Acid for High Efficient Removal of Heavy Metals in Water. Environ. Sci. Technol. 2008, 42, 6949–6954. DOI: 10.1021/es800924c.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids, Part I Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. DOI: 10.1021/ja02268a002.
  • Freundlich, H. Über Die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. DOI: 10.1515/zpch-1907-5723.
  • Tempkin, M. I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalyst. Acta Physicochim. U.R.S.S. 1940, 12, 327–356.
  • Gerente, C.; Lee, V. K. C.; Cloirec, P. L.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption – Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. DOI: 10.1080/10643380600729089.
  • Dubinin, M. M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-Uniform Surface. Chem. Rev. 1960, 60, 235–241. DOI: 10.1021/cr60204a006.
  • Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Series on Chemical Engineering; Imperial College Press, 1998; pp. 61–78.
  • Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gel Oster Stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 1898, 25, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-Second-Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • A Ritchie, A. G. Alternative to Elovich Equation for Kinetics of Adsorption of Gases on Solids. J. Chem. Soc. Faraday Trans. 1 1977, 73, 1650–1653. DOI: 10.1039/f19777301650.
  • Osman, B.; Kara, A.; Beşirli, N. Immobilization of Glucoamylase onto Lewis Metal Ion Chelated Magnetic Affinity Sorbent: Kinetic, Isotherm and Thermodynamic Studies. J. Macromol. Sci. Part A Pure Appl. Chem. 2011, 48, 387–399. DOI: 10.1080/10601325.2011.562734.
  • Hanrahan, G.; Lu, K. Application of Factorial and Response Surface Methodology in Modern Experimental Design and Optimization. Crit. Rev. Anal. Chem. 2006, 36, 141–151. DOI: 10.1080/10408340600969478.
  • Montgomery, D. C. Design and Analysis of Experiments, 5th Ed.; Wiley: New York, 2001.
  • Box, G. E. P.; Hunter, W. G.; Hunter, J. S. Statistics for Experimenters-An Introduction to Design, Data Analysis and Model Building; Wiley: New York, 1978.
  • Karadag, D.; Koc, Y.; Turan, M.; Ozturk, M. A Comparative Study of Linear and Nonlinear Regression Analysis for Ammonium Exchange by Clinoptilolite Zeolite. J. Hazard. Mater. 2007, 144, 432–437. DOI: 10.1016/j.jhazmat.2006.10.055.
  • Kumar, K. V.; Sivanesan, S. Isotherm Parameters for Basic Dyes onto Activated Carbon: Comparison of Linear and Non-Linear Method. J. Hazard. Mater. 2006, 129, 147–150. DOI: 10.1016/j.jhazmat.2005.08.022.
  • Zolgharnein, J.; Shahmoradi, A. Characterization of Sorption Isotherms, Kinetic Models, and Multivariate Approach for Optimization of Hg(II) Adsorption onto Fraxinus Tree Leaves. J. Chem. Eng. Data 2010, 55, 5040–5049. DOI: 10.1021/je1006218.
  • Erdogan, S.; Baysal, A.; Akba, O.; Hamamci, C. Interaction of Metals with Humic Acid Isolated from Oxidized Coal. Pol. J. Environ. Stud. 2007, 16, 671–675.
  • Antic, Z.; Krsmanovic, R. M.; Nikolic, M. G.; Cincovic, M. M.; Mitric, M.; Polizzi, S.; Dramicanin, M. D. Multisite Luminescence of Rare Earth Doped TiO2 Anatase Nanoparticles. Mat. Chem. Phys. 2012, 135, 1064–1069. DOI: 10.1016/j.matchemphys.2012.06.016.
  • Ba-Abbad, M.; Kadhum, A. H.; Mohamad, A.; Takriff, M. S.; Sopian, K. Synthesis and Catalytic Activity of TiO2 Nanoparticles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation. Int. J. Electrochem. Sci. 2012, 7, 4871–4888.
  • Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; dos Santos, W. N. L. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Amini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A. A. Z.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M. Application of Response Surface Methodology for Optimization of Lead Biosorption in an Aqueous Solution by Aspergillus Niger. J. Hazard. Mater. 2008, 154, 694–702. DOI: 10.1016/j.jhazmat.2007.10.114.
  • Kalavathy, M. H.; Regupathi, I.; Pillai, M. G.; Miranda, L. R. Modelling, Analysis and Optimization of Adsorption Parameters for H3PO4 Activated Rubber Wood Sawdust Using Response Surface Methodology (RSM). Colloids Surf B Biointerf. 2009, 70, 35–45. DOI: 10.1016/j.colsurfb.2008.12.007.
  • Kim, H. K.; Kim, J. G.; Cho, J. D.; Hong, J. W. Optimization and Characterization of UV-Curable Adhesives for Optical Communications by Response Surface Methodology. Polym. Test. 2003, 22, 899–906. DOI: 10.1016/S0142-9418(03)00038-2.
  • Adinarayana, K.; Ellaiah, P. Response Surface Optimization of the Critical Medium Components for the Production of Alkaline Protease by a Newly Isolated Bacillus sp. J. Pharm. Pharm. Sci. 2002, 5, 272–278.
  • Wu, D.; Zhou, J.; Li, Y. Effect of the Sulfidation Process on the Mechanical Properties of a CoMoP/Al2O3 Hydrotreating Catalyst. Chem. Eng. Sci. 2009, 64, 198–206. DOI: 10.1016/j.ces.2008.10.014.
  • Azila, Y. Y.; Mashitah, M. D.; Bhatia, S. Process Optimization Studies of Lead (Pb(II)) Biosorption onto Immobilized Cells of Pycnoporus sanguineus Using Response Surface Methodology. Bioresour. Technol. 2008, 99, 8549–8552. DOI: 10.1016/j.biortech.2008.03.056.
  • Webber, T. N.; Chakravarti, R. K. Pore and Solid Diffusion Models for Fixed Bed Adsorbers. J. Amer. Inst. Chem. Eng. 1974, 20, 228–238. DOI: 10.1002/aic.690200204.
  • Atkins, P. W. Physical Chemistry, 5th ed.; Oxford University Press: Oxford, 1995.
  • Zhao, Y. G.; Shen, H. Y.; Pan, S. D.; Hu, M. Q. Synthesis, Characterization and Properties of Ethylenediamine-Functionalized Fe3O4 Magnetic Polymers for Removal of Cr(VI) in Wastewater. J. Hazard. Mater. 2010, 182, 295–302. DOI: 10.1016/j.jhazmat.2010.06.029.
  • Gao, Y.; Wahi, R.; Kan, A. T.; Falkner, J. C.; Colvin, V. L.; Tomson, M. B. Adsorption of Cadmium on Anatase Nanoparticles-Effect of Crystal Size and pH. Langmuir 2004, 20, 9585–9593. DOI: 10.1021/la049334i.
  • Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z. Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite. Energy Proc. 2014, 50, 113–120. DOI: 10.1016/j.egypro.2014.06.014.
  • Recillas, S.; Colón, J.; Casals, E.; González, E.; Puntes, V.; Sánchez, A.; Font, X. Chromium VI Adsorption on Cerium Oxide Nanoparticles and Morphology Changes during the Process. J. Hazard. Mater. 2010, 184, 425–431. DOI: 10.1016/j.jhazmat.2010.08.052.
  • Debnath, S.; Maity, A.; Pillay, K. Magnetic Chitosan–GO Nanocomposite: Synthesis, Characterization and Batch Adsorber Design for Cr (VI) Removal. J. Environ. Chem. Eng. 2014, 2, 963–973. DOI: 10.1016/j.jece.2014.03.012.
  • Zeng, G.; Liu, Y.; Tang, L.; Yang, G.; Pang, Y.; Zhang, Y.; Zhou, Y.; Li, Z.; Li, M.; Lai, M.; et al. Enhancement of Cd(II) Adsorption by Polyacrylic Acid Modified Magnetic Mesoporous Carbon. Chem. Eng. J. 2015, 259, 153–160. DOI: 10.1016/j.cej.2014.07.115.
  • Suksabye, P.; Thiravetyan, P.; Nakbanpote, W.; Chayabutra, S. Chromium Removal from Electroplating Wastewater by Coir Pith. J. Hazard. Mater. 2007, 141, 637–644. DOI: 10.1016/j.jhazmat.2006.07.018.
  • Albishri, H. M.; Yakout, A. A. Efficient Removal of Hg(II) from Dental Effluents by Thio-Functionalized Biochar Derived from Cape Gooseberry (Physalis peruviana L.) Leaves. Mater. Chem. Phys. 2023, 295, 127125. DOI: 10.1016/j.matchemphys.2022.127125.
  • Yakout, A. A.; Khan, Z. A. High Performance Zr-MnO2@Reduced Graphene Oxide Nanocomposite for Efficient and Simultaneous Remediation of Arsenates as(V) from Environmental Water Samples. J. Mol. Liq. 2021, 334, 116427. DOI: 10.1016/j.molliq.2021.116427.
  • Wang, G.; Qi, J.; Wang, S.; Wei, Z.; Li, S.; Cui, J.; Wei, W. Surface-Bound Humic Acid Increased Rhodamine B Adsorption on Nanosized Hydroxyapatite. J. Dispersion Sci. Technol. 2017, 38, 632–641. DOI: 10.1080/01932691.2016.1185729.
  • Yakout, A. A.; Alshitari, W.; Akhdhar, A. Synergistic Effect of Cu-Nanoparticles and β-Cyclodextrin Functionalized Reduced Graphene Oxide Nanocomposite on the Adsorptive Remediation of Tetracycline Antibiotics. Carbohydr. Polym. 2021, 273, 118528. DOI: 10.1016/j.carbpol.2021.118528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.