58
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Nasal mucoadhesive in situ gelling liquid crystalline fluid precursor system of polyene antibiotic for potential treatment of localized sinuses aspergillosis post COVID infection

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1373-1391 | Received 23 Dec 2022, Accepted 02 May 2023, Published online: 11 May 2023

References

  • Kwon, J.; Park, K. H.; Park, S. I.; Jin, S. Y. Aspergillosis of the Paranasal Sinuses–Diagnostic Significance of the Computed Tomography. Yonsei Med. J. 1989, 30, 294–297. DOI: 10.3349/ymj.1989.30.3.294.
  • Trésallet, C.; Seman, M.; Hoang, C.; Menegaux, F. Gastric Perforation from Potential Primary Digestive Aspergillosis. Surgery 2010, 148, 158–159. DOI: 10.1016/j.surg.2009.02.010.
  • Karaman, I.; Karaman, A.; Boduroğlu, E. C.; Erdoğan, D.; Tanır, G. Invasive Aspergillus Infection Localized to the Gastric Wall: Report of a Case. Surg. Today. 2013, 43, 682–684. DOI: 10.1007/s00595-012-0255-0.
  • Deutsch, P. G.; Whittaker, J.; Prasad, S. Invasive and Non-Invasive Fungal Rhinosinusitis-A Review and Update of the Evidence. Medicina (Kaunas). 2019, 55(7), 319. DOI: 10.3390/medicina55070319
  • Lanza, D. C.; Kennedy, D. W. Adult Rhinosinusitis Defined. Otolaryngol–Head Neck Surg. Off J. Am. Acad. Otolaryngol.-Head Neck Surg. 1997, 117, S1–S7. DOI: 10.1016/S0194-5998(97)70001-9.
  • Kern, E. B.; Sherris, D.; Stergiou, A. M.; Katz, L. M.; Rosenblatt, L. C.; Ponikau, J. Diagnosis and Treatment of Chronic Rhinosinusitis: Focus on Intranasal Amphotericin B. Ther. Clin. Risk Manag. 2007, 3, 319–325. DOI: 10.2147/tcrm.2007.3.2.319.
  • Tamgadge, A. P.; Mengi, R.; Tamgadge, S.; Bhalerao, S. S. Chronic Invasive Aspergillosis of Paranasal Sinuses: A Case Report with Review of Literature. J. Oral Maxillofac. Pathol. 2012, 16, 460–464. DOI: 10.4103/0973-029X.102522.
  • Kazi, M.; Dehghan, M. H. Development of Inhalable Cubosome Nanoparticles of Nystatin for Effective Management of Invasive Pulmonary Aspergillosis. J. Pharm. Istanb. Univ. 2020, 50, 224–237.
  • Baddley, J. W.; Thompson, G. R.; 3rd, Chen, S. C. A.; White, P. L.; Johnson, M. D.; Nguyen, M. H.; et al. Coronavirus Disease 2019-Associated Invasive Fungal Infection. Open Forum Infect. Dis. 2021, 8, ofab510. DOI: 10.1093/ofid/ofab510.
  • Gangneux, J. P.; Bougnoux, M. E.; Dannaoui, E.; Cornet, M.; Zahar, J. R. Invasive Fungal Diseases during COVID-19: We Should Be Prepared. J. Mycol. Med. 2020, 30, 100971. DOI: 10.1016/j.mycmed.2020.100971.
  • Hoenigl, M. Invasive Fungal Disease Complicating Coronavirus Disease 2019: When It Rains, It Spores. Clin. Infect. Dis. 2021, 73, e1645–e1648. DOI: 10.1093/cid/ciaa1342.
  • Song, G.; Liang, G.; Liu, W. Fungal Co-Infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Mycopathologia 2020, 185, 599–606. DOI: 10.1007/s11046-020-00462-9.
  • Jen, A.; Kacker, A.; Huang, C.; Anand, V. Fluconazole Nasal Spray in the Treatment of Allergic Fungal Sinusitis: A Pilot Study. Ear. Nose. Throat J. 2004, 83, 692, 694–5. DOI: 10.1177/014556130408301013.
  • Brewer Dhsm Joseph, H. Intranasal Nystatin Therapy in Patients with Chronic Illness Associated with Mold and Mycotoxins. Glob. J. Med. Res. 2015, 15, 33–36.
  • Jiang, R. S.; Hsu, S. H.; Liang, K. L. Amphotericin B Nasal Irrigation as an Adjuvant Therapy after Functional Endoscopic Sinus Surgery. Am. J. Rhinol. Allergy 2015, 29, 435–440. DOI: 10.2500/ajra.2015.29.4246.
  • Ebbens, F.; Scadding, G.; Badia, L.; Hellings, P.; Jorissen, M.; Mullol, J.; Cardesin, A.; Bachert, C.; Vanzele, T.; Dijkgraaf, M.; et al. Amphotericin B Nasal Lavages: Not a Solution for Patients with Chronic Rhinosinusitis. J. Allergy Clin. Immunol. 2006, 118, 1149–1156. DOI: 10.1016/j.jaci.2006.07.058.
  • Shirazi, M. A.; Stankiewicz, J. A.; Kammeyer, P. Activity of Nasal Amphotericin B Irrigation against Fungal Organisms in Vitro. Am. J. Rhinol. 2007, 21, 145–148. DOI: 10.2500/ajr.2007.21.2988.
  • Ricchetti, A.; Landis, B. N.; Maffioli, A.; Giger, R.; Zeng, C.; Lacroix, J. S. Effect of anti-Fungal Nasal Lavage with Amphotericin B on Nasal Polyposis. J. Laryngol. Otol. 2002, 116, 261–263. DOI: 10.1258/0022215021910708.
  • Singh, R. M. P.; Kumar, A.; Pathak, K. Mucoadhesive in Situ Nasal Gelling Drug Delivery Systems for Modulated Drug Delivery. Expert Opin. Drug Deliv. 2013, 10, 115–130. DOI: 10.1517/17425247.2013.746659.
  • Carvalho, F. C.; Campos, M. L.; Peccinini, R. G.; Gremião, M. P. D. Nasal Administration of Liquid Crystal Precursor Mucoadhesive Vehicle as an Alternative Antiretroviral Therapy. Eur. J. Pharm. Biopharm. 2013, 84, 219–227. DOI: 10.1016/j.ejpb.2012.11.021.
  • Carrillo-Muñoz, A. J.; Quindós, G.; Tur, C.; Ruesga, M. T.; Miranda, Y.; del Valle, O.; Cossum, P. A.; Wallace, T. L. In-Vitro Antifungal Activity of Liposomal Nystatin in Comparison with Nystatin, Amphotericin B Cholesteryl Sulphate, Liposomal Amphotericin B, Amphotericin B Lipid Complex, Amphotericin B Desoxycholate, Fluconazole and Itraconazole. J. Antimicrob. Chemother. 1999, 44, 397–401. DOI: 10.1093/jac/44.3.397.
  • Richardson, M.; Richardson, M. D.; Warnock, D. W. Fungal Infection: Diagnosis and Management. 4th ed. John Wiley & Sons Ltd: Chichester, UK, 2003; pp. 29–79.
  • Groll, A. H.; Gonzalez, C. E.; Giri, N.; Kligys, K.; Love, W.; Peter, J.; Feuerstein, E.; Bacher, J.; Piscitelli, S. C.; Walsh, T. J.; et al. Liposomal Nystatin against Experimental Pulmonary Aspergillosis in Persistently Neutropenic Rabbits: Efficacy, Safety and Non-Compartmental Pharmacokinetics. J. Antimicrob. Chemother. 1999, 43, 95–103. DOI: 10.1093/jac/43.1.95.
  • Ernst, E. J.; Klepser, M. E.; Pfaller, M. A. Postantifungal Effects of Echinocandin, Azole, and Polyene Antifungal Agents against Candida albicans and Cryptococcus neoformans. Antimicrob. Agents Chemother. 2000, 44, 1108–1111. DOI: 10.1128/AAC.44.4.1108-1111.2000.
  • Pagán-Mercado, G.; Rivera-Ruiz, M. E.; Segarra-Román, F.; Rodríguez-Medina, J. R. Antifungal Research Strategies Aiming for New Targets. P R Health Sci. J. 2009, 28, 220–226.
  • Oltu, I.; Cepoi, L.; Rudic, V.; Rudi, L.; Chiriac, T.; Valuta, A.; Codreanu, S. Current Research and New Perspectives in Antifungal Drug Development. Adv. Exp. Med. Biol. 2020, 1282, 71–83. DOI: 10.1007/5584_2019_453.
  • Groll, A. H.; Tragiannidis, A. Update on Antifungal Agents for Paediatric Patients. Clin. Microbiol. Infect. 2010, 16, 1343–1353. DOI: 10.1111/j.1469-0691.2010.03334.x.
  • Fisher, M. C.; Hawkins, N. J.; Sanglard, D.; Gurr, S. J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. DOI: 10.1126/science.aap7999.
  • Verweij, P. E.; Chowdhary, A.; Melchers, W. J. G.; Meis, J. F. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles? Clin. Infect. Dis. 2016, 62, 362–368. DOI: 10.1093/cid/civ885.
  • Beer, K. D.; Farnon, E. C.; Jain, S.; Jamerson, C.; Lineberger, S.; Miller, J.; Berkow, E. L.; Lockhart, S. R.; Chiller, T.; Jackson, B. R.; et al. Multidrug-Resistant Aspergillus fumigatus Carrying Mutations Linked to Environmental Fungicide Exposure - Three States, 2010-2017. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 1064–1067. DOI: 10.15585/mmwr.mm6738a5.
  • Offner, F.; Krcmery, V.; Boogaerts, M.; Doyen, C.; Engelhard, D.; Ribaud, P.; Cordonnier, C.; de Pauw, B.; Durrant, S.; Marie, J.-P.; et al. Liposomal Nystatin in Patients with Invasive Aspergillosis Refractory to or Intolerant of Amphotericin B. Antimicrob. Agents Chemother. 2004, 48, 4808–4812. DOI: 10.1128/AAC.48.12.4808-4812.2004.
  • Fernández Campos, F.; Calpena Campmany, A. C.; Rodríguez Delgado, G.; López Serrano, O.; Clares Naveros, B. Development and Characterization of a Novel Nystatin-Loaded Nanoemulsion for the Buccal Treatment of Candidosis: Ultrastructural Effects and Release Studies. J. Pharm. Sci. 2012, 101, 3739–3752. DOI: 10.1002/jps.23249.
  • Zhao, X. Y.; Zhang, J.; Zheng, L. Q.; Li, D. H. Studies of Cubosomes as a Sustained Drug Delivery System. J. Dispers. Sci. Technol. 2005, 25, 795–799. DOI: 10.1081/DIS-200035589.
  • Azmi, I. D. M.; Moghimi, S. M.; Yaghmur, A. Cubosomes and Hexosomes as Versatile Platforms for Drug Delivery. Ther. Deliv. 2015, 6, 1347–1364. DOI: 10.4155/tde.15.81.
  • Mei, L.; Huang, X.; Xie, Y.; Chen, J.; Huang, Y.; Wang, B.; Wang, H.; Pan, X.; Wu, C. An Injectable in Situ Gel with Cubic and Hexagonal Nanostructures for Local Treatment of Chronic Periodontitis. Drug Deliv. 2017, 24, 1148–1158. DOI: 10.1080/10717544.2017.1359703.
  • Salmazi, R.; Calixto, G.; Bernegossi, J.; Ramos, M. A.; dos, S.; Bauab, T. M.; Chorilli, M. A Curcumin-Loaded Liquid Crystal Precursor Mucoadhesive System for the Treatment of Vaginal Candidiasis. Int. J. Nanomed. 2015, 10, 4815–4824.
  • Fong, W. K.; Hanley, T.; Boyd, B. J. Stimuli Responsive Liquid Crystals Provide “on-Demand” Drug Delivery in Vitro and in Vivo. J. Control. Release 2009, 135, 218–226. DOI: 10.1016/j.jconrel.2009.01.009.
  • Wilson, P.; Stewart, A.; Flournoy, V.; Zito, S. W.; Vancura, A. Liquid Chromatographic Determination of Nystatin in Pharmaceutical Preparations. J. AOAC Int. 2001, 84, 1050–1055. DOI: 10.1093/jaoac/84.4.1050.
  • Ren, X.; Svirskis, D.; Alany, R. G.; Zargar-Shoshtari, S.; Wu, Z. In-Situ Phase Transition from Microemulsion to Liquid Crystal with the Potential of Prolonged Parenteral Drug Delivery. Int. J. Pharm. 2012, 431, 130–137. DOI: 10.1016/j.ijpharm.2012.04.020.
  • Chen, Y.; Liang, X.; Ma, P.; Tao, Y.; Wu, X.; Wu, X.; Chu, X.; Gui, S. Phytantriol-Based in Situ Liquid Crystals with Long-Term Release for Intra-Articular Administration. AAPS PharmSciTech 2015, 16, 846–854. DOI: 10.1208/s12249-014-0277-6.
  • Yang, Z.; Liang, X.; Jiang, X.; Guo, J.; Tao, Y.; Wang, S.; et al. Development and Evaluation of Minocycline Hydrochloride-Loaded in Situ Cubic Liquid Crystal for Intra-Periodontal Pocket Administration. Molecules. 2018, 23(9), 2275. DOI: 10.3390/molecules23092275.
  • Dehghan, M. H. G.; Marzuka, M. Lyophilized Chitosan/Xanthan Polyelectrolyte Complex Based Mucoadhesive Inserts for Nasal Delivery of Promethazine Hydrochloride. Iran. J. Pharm. Res. 2014, 13, 769–784.
  • Kazi, M. S.; Dehghan, M. H. Mapping the Impact of a Polar Aprotic Solvent on the Microstructure and Dynamic Phase Transition in Glycerol Monooleate/Oleic Acid Systems. Turk. J. Pharm. Sci. 2020, 17, 307–318. DOI: 10.4274/tjps.galenos.2019.26096.
  • Souza, C.; Watanabe, E.; Borgheti-Cardoso, L. N.; De Abreu Fantini, M. C.; Lara, M. G. Mucoadhesive System Formed by Liquid Crystals for Buccal Administration of Poly(Hexamethylene Biguanide) Hydrochloride. J. Pharm. Sci. 2014, 103, 3914–3923. DOI: 10.1002/jps.24198.
  • Schott, H. Kinetics of Swelling of Polymers and Their Gels. J. Pharm. Sci. 1992, 81, 467–470. DOI: 10.1002/jps.2600810516.
  • Lee, J.; Choi, S. U.; Yoon, M. K.; Choi, Y. W. Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate. Arch. Pharm. Res. 2003, 26, 880–885. DOI: 10.1007/BF02980036.
  • Rosevear, F. B. The Microscopy of the Liquid Crystalline Neat and Middle Phases of Soaps and Synthetic Detergents. J. Am. Oil Chem. Soc. 1954, 31, 628–639. DOI: 10.1007/BF02545595.
  • Gurfinkel, J.; Aserin, A.; Garti, N. Interactions of Surfactants in Nonionic/Anionic Reverse Hexagonal Mesophases and Solubilization of α-Chymotrypsinogen A. Colloids Surf. Physicochem. Eng. Asp. 2011, 392, 322–328. DOI: 10.1016/j.colsurfa.2011.10.010.
  • Gosenca, M.; Bešter-Rogač, M.; Gašperlin, M. Lecithin Based Lamellar Liquid Crystals as a Physiologically Acceptable Dermal Delivery System for Ascorbyl Palmitate. Eur. J. Pharm. Sci. 2013, 50, 114–122. DOI: 10.1016/j.ejps.2013.04.029.
  • Nunes, K. M.; Teixeira, C. C. C.; Kaminski, R. C. K.; Sarmento, V. H. V.; Couto, R. O.; Pulcinelli, S. H.; Freitas, O. The Monoglyceride Content Affects the Self-Assembly Behavior, Rheological Properties, Syringeability, and Mucoadhesion of in Situ-Gelling Liquid Crystalline Phase. J. Pharm. Sci. 2016, 105, 2355–2364. DOI: 10.1016/j.xphs.2016.05.005.
  • Petrikkou, E.; Rodriguez-Tudela, J. L.; Cuenca-Estrella, M.; Gomez, A.; Molleja, A.; Mellado, E. Inoculum Standardization for Antifungal Susceptibility Testing of Filamentous Fungi Pathogenic for Humans. J. Clin. Microbiol. 2001, 39, 1345–1347. DOI: 10.1128/JCM.39.4.1345-1347.2001.
  • Pisal, S.; Shelke, V.; Mahadik, K.; Kadam, S. Effect of Organogel Components on in Vitro Nasal Delivery of Propranolol Hydrochloride. AAPS PharmSciTech 2004, 5, e63. DOI: 10.1208/pt050463.
  • Shan-Bin, G.; Yue, T.; Ling-Yan, J. Long-Term Sustained-Released in Situ Gels of a Water-Insoluble Drug Amphotericin B for Mycotic Arthritis Intra-Articular Administration: Preparation, in Vitro and in Vivo Evaluation. Drug Dev. Ind. Pharm. 2015, 41, 573–582. DOI: 10.3109/03639045.2014.884129.
  • Yang, Z.; Tan, Y.; Chen, M.; Dian, L.; Shan, Z.; Peng, X.; Wu, C. Development of Amphotericin B-Loaded Cubosomes through the SolEmuls Technology for Enhancing the Oral Bioavailability. AAPS PharmSciTech 2012, 13, 1483–1491. DOI: 10.1208/s12249-012-9876-2.
  • Karasulu, E.; Yavasoğlu, A.; Evrensanal, Z.; Uyanikgil, Y.; Karasulu, H. Y. Permeation Studies and Histological Examination of Sheep Nasal Mucosa following Administration of Different Nasal Formulations with or without Absorption Enhancers. Drug Deliv. 2008, 15, 219–225. DOI: 10.1080/10717540802006377.
  • Semis, R.; Nili, S. S.; Munitz, A.; Zaslavsky, Z.; Polacheck, I.; Segal, E. Pharmacokinetics, Tissue Distribution and Immunomodulatory Effect of Intralipid Formulation of Nystatin in Mice. J. Antimicrob. Chemother. 2012, 67, 1716–1721. DOI: 10.1093/jac/dks117.
  • Groll, A. H.; Mickiene, D.; Werner, K.; Piscitelli, S. C.; Walsh, T. J. High-Performance Liquid Chromatographic Determination of Liposomal Nystatin in Plasma and Tissues for Pharmacokinetic and Tissue Distribution Studies. J. Chromatogr. B Biomed. Sci. Appl. 1999, 735, 51–62. DOI: 10.1016/s0378-4347(99)00396-5.
  • Llabot, J. M.; Allemandi, D. A.; Manzo, R. H.; Longhi, M. R. HPLC Method for the Determination of Nystatin in Saliva for Application in Clinical Studies. J. Pharm. Biomed. Anal. 2007, 45, 526–530. DOI: 10.1016/j.jpba.2007.06.014.
  • Kazi, M.; Dehghan, M. H. Validation of a Bioanalytical Reverse-Phase High-Performance Liquid Chromatographic Method for the Quantitation of Nystatin in an Animal Model after Intranasal in Situ Gel Administration. Asian J. Pharm. Clin. Res. 2020, 13, 180–184.
  • Zhou, C.; Huang, Z.; Huang, Y.; Wang, B.; Yang, P.; Fan, Y.; Hou, A.; Yang, B.; Zhao, Z.; Quan, G.; et al. In Situ Gelation of rhEGF-Containing Liquid Crystalline Precursor with Good Cargo Stability and System Mechanical Properties: A Novel Delivery System for Chronic Wounds Treatment. Biomater. Sci. 2019, 7, 995–1010. DOI: 10.1039/c8bm01196f.
  • Sun, M.; Sun, H.; Wang, Y.; Sánchez-Soto, M.; Schiraldi, D. A. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels. Gels Basel Switz. 2018, 4, 33. DOI: 10.3390/gels4020033.
  • Wang, H. X.; Zhang, G. Y.; Feng, S. H.; Xie, X. L. Rheology as a Tool for Detecting Mesophase Transitions for a Model Nonyl Phenol Ethoxylate Surfactant. Colloids Surf. Physicochem. Eng. Asp. 2005, 256, 35–42. DOI: 10.1016/j.colsurfa.2004.09.037.
  • Ur-Rehman, T.; Tavelin, S.; Gröbner, G. Effect of DMSO on Micellization, Gelation and Drug Release Profile of Poloxamer 407. Int. J. Pharm. 2010, 394, 92–98. DOI: 10.1016/j.ijpharm.2010.05.012.
  • Borgheti-Cardoso, L. N.; Depieri, L. V.; Kooijmans, S. A. A.; Diniz, H.; Calzzani, R. A. J.; Vicentini, F. T. M. d C.; van der Meel, R.; Fantini, M. C. d A.; Iyomasa, M. M.; Schiffelers, R. M.; et al. An in Situ Gelling Liquid Crystalline System Based on Monoglycerides and Polyethylenimine for Local Delivery of siRNAs. Eur. J. Pharm. Sci. 2015, 74, 103–117. DOI: 10.1016/j.ejps.2015.04.017.
  • Evenbratt, H.; Jonsson, C.; Faergemann, J.; Engström, S.; Ericson, M. B. In Vivo Study of an Instantly Formed Lipid-Water Cubic Phase Formulation for Efficient Topical Delivery of Aminolevulinic Acid and Methyl-Aminolevulinate. Int. J. Pharm. 2013, 452, 270–275. DOI: 10.1016/j.ijpharm.2013.05.047.
  • Rizwan, S. B.; Hanley, T.; Boyd, B. J.; Rades, T.; Hook, S. Liquid Crystalline Systems of Phytantriol and Glyceryl Monooleate Containing a Hydrophilic Protein: Characterisation, Swelling and Release Kinetics. J. Pharm. Sci. 2009, 98, 4191–4204. DOI: 10.1002/jps.21724.
  • Chang, C. M.; Bodmeier, R. Swelling of and Drug Release from Monoglyceride-Based Drug Delivery Systems. J. Pharm. Sci. 1997, 86, 747–752. DOI: 10.1021/js960256w.
  • Artzner, F.; Geiger, S.; Olivier, A.; Allais, C.; Finet, S.; Agnely, F. Interactions between Poloxamers in Aqueous Solutions: Micellization and Gelation Studied by Differential Scanning Calorimetry, Small Angle X-Ray Scattering, and Rheology. Langmuir 2007, 23, 5085–5092. DOI: 10.1021/la062622p.
  • Oyafuso, M.; Carvalho, F.; Takeshita, T.; de Souza, A.; Araújo, D.; Merino, V.; Gremião, M.; Chorilli, M. Development and in Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone. Polymers 2017, 9, 330. DOI: 10.3390/polym9080330.
  • Soni, S. S.; Brotons, G.; Bellour, M.; Narayanan, T.; Gibaud, A. Quantitative SAXS Analysis of the P123/Water/Ethanol Ternary Phase Diagram. J. Phys. Chem. B 2006, 110, 15157–15165. DOI: 10.1021/jp062159p.
  • Yamashita, Y.; Kinoshita, K.; Yamazaki, M. Low Concentration of DMSO Stabilizes the Bilayer Gel Phase Rather than the Interdigitated Gel Phase in Dihexadecylphosphatidylcholine Membrane. Biochim. Biophys. Acta 2000, 1467, 395–405. DOI: 10.1016/s0005-2736(00)00237-6.
  • Abe, S.; Takahashi, H. A Comparative Study of the Effects of Dimethylsulfoxide and Glycerol on the Bicontinuous Cubic Structure of Hydrated Monoolein and Its Phase Behavior. Chem. Phys. Lipids. 2007, 147, 59–68. DOI: 10.1016/j.chemphyslip.2007.03.005.
  • Borné, J.; Nylander, T.; Khan, A. Phase Behavior and Aggregate Formation for the Aqueous Monoolein System Mixed with Sodium Oleate and Oleic Acid. Langmuir 2001, 17, 7742–7751. DOI: 10.1021/la010650w.
  • Ki, M.-H.; Lim, J.-L.; Ko, J.-Y.; Park, S.-H.; Kim, J.-E.; Cho, H.-J.; Park, E.-S.; Kim, D.-D. A New Injectable Liquid Crystal System for One Month Delivery of Leuprolide. J. Control. Release 2014, 185, 62–70. DOI: 10.1016/j.jconrel.2014.04.034.
  • Schulz, P. C. DSC Analysis of the State of Water in Surfactant-Based Microstructures. J. Therm. Anal. Calorim. 1998, 51, 135–149. DOI: 10.1007/BF02719017.
  • Ozmen, M. M.; Okay, O. Formation of Macroporous Poly(Acrylamide) Hydrogels in DMSO/Water Mixture: Transition from Cryogelation to Phase Separation Copolymerization. React Funct Polym 2008, 68, 1467–1475. DOI: 10.1016/j.reactfunctpolym.2008.07.005.
  • Akkari, A. C. S.; Papini, J. Z. B.; Garcia, G. K.; Franco, M. K. K. D.; Cavalcanti, L. P.; Gasperini, A.; Alkschbirs, M. I.; Yokaichyia, F.; de Paula, E.; Tófoli, G. R.; et al. Poloxamer 407/188 Binary Thermosensitive Hydrogels as Delivery Systems for Infiltrative Local Anesthesia: Physico-Chemical Characterization and Pharmacological Evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 299–307. DOI: 10.1016/j.msec.2016.05.088.
  • Alexandridis, P.; Holzwarth, J. F. Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer). Langmuir 1997, 13, 6074–6082. DOI: 10.1021/la9703712.
  • Ruela, A. L. M.; Carvalho, F. C.; Pereira, G. R. Exploring the Phase Behavior of Monoolein/Oleic Acid/Water Systems for Enhanced Donezepil Administration for Alzheimer Disease Treatment. J. Pharm. Sci. 2016, 105, 71–77. DOI: 10.1016/j.xphs.2015.10.016.
  • de Araújo, P. R.; Calixto, G. M. F.; da Silva, I. C.; de Paula Zago, L. H.; Oshiro Junior, J. A.; Pavan, F. R.; Ribeiro, A. O.; Fontana, C. R.; Chorilli, M. Mucoadhesive in Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech 2019, 20, 225. DOI: 10.1208/s12249-019-1439-3.
  • Patil, S. S.; Venugopal, E.; Bhat, S.; Mahadik, K. R.; Paradkar, A. R. Exploring Microstructural Changes in Structural Analogues of Ibuprofen-Hosted in Situ Gelling System and Its Influence on Pharmaceutical Performance. AAPS PharmSciTech 2015, 16, 1153–1159. DOI: 10.1208/s12249-015-0308-y.
  • Wang, Z.; Diao, Z.; Liu, F.; Li, G.; Zhang, G. Microstructure and Rheological Properties of Liquid Crystallines Formed in Brij 97/Water/IPM System. J. Colloid Interface Sci. 2006, 297, 813–818. DOI: 10.1016/j.jcis.2005.11.021.
  • Réeff, J.; Gaignaux, A.; Goole, J.; Siepmann, J.; Siepmann, F.; Jerome, C.; Thomassin, J. M.; De Vriese, C.; Amighi, K. Characterization and Optimization of GMO-Based Gels with Long Term Release for Intraarticular Administration. Int. J. Pharm. 2013, 451, 95–103. DOI: 10.1016/j.ijpharm.2013.04.079.
  • Fonseca-Santos, B.; Bonifácio, B. V.; Baub, T. M.; Gremião, M. P. D.; Chorilli, M. In-Situ Gelling Liquid Crystal Mucoadhesive Vehicle for Curcumin Buccal Administration and Its Potential Application in the Treatment of Oral Candidiasis. J. Biomed. Nanotechnol. 2019, 15, 1334–1344. DOI: 10.1166/jbn.2019.2758.
  • Liang, X.; Chen, Y. L.; Jiang, X. J.; Wang, S. M.; Zhang, J. W.; Gui, S. Y. H(II) Mesophase as a Drug Delivery System for Topical Application of Methyl Salicylate. Eur. J. Pharm. Sci. 2017, 100, 155–162. DOI: 10.1016/j.ejps.2016.12.033.
  • Sallam, A. S.; Hamudi, F. F.; Khalil, E. A. Effect of Ethylcellulose and Propylene Glycol on the Controlled-Release Performance of Glyceryl Monooleate-Mertronidazole Periodontal Gel. Pharm. Dev. Technol. 2015, 20, 159–168. DOI: 10.3109/10837450.2013.852573.
  • Ghadiri, M.; Young, P. M.; Traini, D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019, 11, 113. DOI: 10.3390/pharmaceutics11030113.
  • Uppuluri, C. T.; Ravi, P. R.; Dalvi, A. V.; Shaikh, S. S.; Kale, S. R. Piribedil Loaded Thermo-Responsive Nasal in Situ Gelling System for Enhanced Delivery to the Brain: Formulation Optimization, Physical Characterization, and in Vitro and in Vivo Evaluation. Drug Deliv. Transl. Res. 2021, 11, 909–926. DOI: 10.1007/s13346-020-00800-w.
  • Girotra, P.; Thakur, A.; Kumar, A.; Singh, S. K. Identification of Multi-Targeted anti-Migraine Potential of Nystatin and Development of Its Brain Targeted Chitosan Nanoformulation. Int. J. Biol. Macromol. 2017, 96, 687–696. DOI: 10.1016/j.ijbiomac.2016.12.065.
  • Kimura, G.; Nakaoki, T.; Colley, T.; Rapeport, G.; Strong, P.; Ito, K.; Kizawa, Y. In Vivo Biomarker Analysis of the Effects of Intranasally Dosed PC945, a Novel Antifungal Triazole, on Aspergillus fumigatus Infection in Immunocompromised Mice. Antimicrob. Agents Chemother. 2017, 61. DOI: 10.1128/AAC.00124-17.
  • Knopik-Skrocka, A.; Bielawski, J. The Mechanism of the Hemolytic Activity of Polyene Antibiotics. Cell Mol. Biol. Lett. 2002, 7(1), 31–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.