149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of biosorption efficiency for hexavalent chromium remediation in synthetic wastewater using unmodified and chemically modified chicken feathers

, , ORCID Icon, & ORCID Icon
Pages 1415-1429 | Received 05 Dec 2022, Accepted 13 May 2023, Published online: 04 Jun 2023

References

  • Villen-Guzman, M.; Gutierrez-Pinilla, D.; Gomez-Lahoz, C.; Vereda-Alonso, C.; Rodriguez-Maroto, J. M.; Arhoun, B. Optimization of Ni (II) Biosorption from Aqueous Solution on Modified Lemon Peel. Environ. Res. 2019, 179, 108849. DOI: 10.1016/j.envres.2019.108849.
  • Cherdchoo, W.; Nithettham, S.; Charoenpanich, J. Removal of Cr(VI) from Synthetic Wastewater by Adsorption onto Coffee Ground and Mixed Waste Tea. Chemosphere 2019, 221, 758–767. DOI: 10.1016/j.chemosphere.2019.01.100.
  • Tytłak, A.; Oleszczuk, P.; Dobrowolski, R. Sorption and Desorption of Cr(VI) Ions from Water by Biochars in Different Environmental Conditions. Environ. Sci. Pollut. Res. Int. 2015, 22, 5985–5994. DOI: 10.1007/s11356-014-3752-4.
  • Hsu, N. H.; Wang, S. L.; Liao, Y. H.; Huang, S. T.; Tzou, Y. M.; Huang, Y. M. Removal of Hexavalent Chromium from Acidic Aqueous Solutions Using Rice Straw-Derived Carbon. J. Hazard Mater. 2009, 171, 1066–1070. DOI: 10.1016/j.jhazmat.2009.06.112.
  • Krishnani, K. K.; Ayyappan, S. Heavy Metals Remediation of Water Using Plants and Lignocellulosic Agrowaste. Rev. Environ. Contam. Toxicol. 2006, 188, 59–84. DOI: 10.1007/0-387-28657-7_3.
  • Teshale, F.; Karthikeyan, R.; Sahu, O. Synthesized Bioadsorbent from Fish Scale for Chromium (III) Removal. Micron. 2020, 130, 102817. DOI: 10.1016/j.micron.2019.102817.
  • Albadarin, A. B.; Mangwandi, C.; Al-Muhtaseb, A. H.; Walker, G. M.; Allen, S. J.; Ahmad, M. N. Kinetic and Thermodynamics of Chromium Ions Adsorption onto Low-Cost Dolomite Adsorbent. Chem. Eng. J. 2012, 179, 193–202. DOI: 10.1016/j.cej.2011.10.029.
  • Uysal, M.; Irfan, A. Removal of Cr(VI) from Industrial Wastewaters by Adsorption Part I: Determination of Optimum Condition. J. Hazard Mater. 2007, 149, 482–491. DOI: 10.1016/j.jhazmat.2007.04.019.
  • Rengaraj, S.; Joo, C. K.; Kim, Y.; Yi, J. Kinetics of Removal of Chromium from Water and Electronic Process Wastewater by Ion Exchange Resins:1200H, 1500H and IRN97H. J. Hazard Mater. 2003, 102, 257–275. DOI: 10.1016/S0304-3894(03)00209-7.
  • Karthikeyan, S.; Gupta, V. K.; Boopathy, R.; Titus, A.; Sekaran, G. A New Approach for the Degradation of High Concentration of Aromatic Amine by Heterocatalytic Fenton Oxidation: Kinetic and Spectroscopic Studies. J. Mol. Liq. 2012, 173, 153–163. DOI: 10.1016/j.molliq.2012.06.022.
  • Li, C.; Chen, H.; Li, Z. Adsorptive Removal of Cr(VI) by Fe-Modified Steam Exploded Wheat Straw. Proc. Biochem. 2004, 39, 541–545. DOI: 10.1016/s0032-9592(03)00087-6.
  • Georgieva, V. G.; Gonsalvesh, L.; Tavlieva, M. P. Thermodynamics and Kinetics of the Removal of Nickel (II) Ions from Aqueous Solutions by Biochar Adsorbent Made from Agro-Waste Walnut Shells. J. Mol. Liq. 2020, 312, 112788. DOI: 10.1016/j.molliq.2020.112788.
  • Rangabhashiyam, S.; Selvaraju, N. Efficacy of Unmodified and Chemically Modified Swietenia Mahagoni Shells for the Removal of Hexavalent Chromium from Simulated Wastewater. J. Mol. Liq. 2015, 209, 487–497. DOI: 10.1016/j.molliq.2015.06.033.
  • Carabineiro, S. A. C.; Thavorn-Amornsri, T.; Pereira, M. F. R.; Figueiredo, J. L. Adsorption of Ciprofloxacin on Surface-Modified Carbon Materials. Water Res. 2011, 45, 4583–4591. DOI: 10.1016/j.watres.2011.06.008.
  • Carabineiro, S. A. C.; Thavorn-Amornsri, T.; Pereira, M. F. R.; Serp, P.; Figueiredo, J. L. Comparison between Activated Carbon, Carbon Xerogel and Carbon Nanotubes for the Adsorption of the Antibiotic Ciprofloxacin. Catal. Today 2012, 186, 29–34. DOI: 10.1016/j.cattod.2011.08.020.
  • Hashmi, A.; Singh, A. K.; Jain, B.; Carabineiro, S. A. C. Chloramine-T/N Bromosuccinimide/FeCl3/KIO3decorated Graphene Oxide Nanosheets and Their Antibacterial Activity. Nanomaterials 2020, 10, 105. DOI: 10.3390/nano10010105.
  • Yadav, S.; Asthana, A.; Singh, A. K.; Chakraborty, R.; Sree Vidya, S.; Susan, M. A. B. H.; Carabineiro, S. A. C. Adsorption of Cationic Dyes, Drugs and Metal from Aqueous Solutions Using a Polymer Composite of Magnetic/β-Cyclodextrin/Activated Charcoal/Na Alginate: Isotherm, Kinetics and Regeneration Studies. J. Hazard Mater. 2021, 409, 124840. DOI: 10.1016/j.jhazmat.2020.124840.
  • Chakraborty, R.; Asthana, A.; Singh, A. K.; Jain, B.; Susan, M. A. B. H. Adsorption of Heavy Metal Ions by Various Low Cost Adsorbents: A Review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. DOI: 10.1080/03067319.2020.1722811.
  • Chakraborty, R.; Verma, R.; Asthana, A.; Sree Vidya, S.; Singh, A. K. Adsorption of Hazardous Chromium (VI) Ions from Aqueous Solutions Using Modified Sawdust: Kinetics, Isotherm and Thermodynamic Modelling. Int. J. Environ. Anal. Chem. 2021, 101, 911–928. DOI: 10.1080/03067319.2019.1673743.
  • Yi, Y.; Lv, J.; Liu, Y.; Wu, G. Synthesis and Application of Modified Litchi Peel for Removal of Hexavalent Chromium from Aqueous Solutions. J. Mol. Liq. 2017, 225, 28–33. DOI: 10.1016/j.molliq.2016.10.140.
  • Wassie, A. B.; Srivastava, V. C. Teff Straw Characterization and Utilization for Chromium Removal from Wastewater: Kinetics, Isotherm and Thermodynamic Modelling. J. Environ. Chem. Eng. 2016, 4, 1117–1125. DOI: 10.1016/j.jece.2016.01.019.
  • Rafya, M.; Hafidi, A.; Zehhar, N.; Benkhalti, F. Low-Cost Modified Adsorbents Derived from the Solid Residue of Rosmarinus Officinalis L. for Heavy Metal Uptake. Ind. Crops Prod. 2023, 195, 116317. DOI: 10.1016/j.indcrop.2023.116317.
  • Chakraborty, R.; Asthana, A.; Singh, A. K.; Verma, R.; Sankarasubramanian, S.; Yadav, S.; Carabineiro, S. A. C.; Susan, M. A. B. H. Chicken Feathers Derived Materials for the Removal of Chromium from Aqueous Solutions: Kinetics, Isotherms, Thermodynamics and Regeneration Studies. J. Dispersion Sci. Technol. 2022, 43, 446–460. DOI: 10.1080/01932691.2020.1842760.
  • Zubair, M.; Roopesh, M. S.; Ullah, A. Nano-Modified Feather Keratin Derived Green and Sustainable Biosorbents for the Remediation of Heavy Metals from Synthetic Wastewater. Chemosphere 2022, 308, 136339. DOI: 10.1016/j.chemosphere.2022.136339.
  • Sun, P.; Zhu, G.; Li, T.; Li, X. K.; Shi, Q.; Xue, M.; Li, B. B. Acidification Chicken Feather as Sorbent for Selectively Achicken Feather as Sorbent for Selectively Adsorbing of Cr(VI) Ions in Aqueous Solution. Mater. Today Commun. 2020, 24, 101358. DOI: 10.1016/j.mtcomm.2020.101358.
  • Saha, S.; Zubair, M.; Khosa, M. A.; Song, S.; Ullah, A. Keratin and Chitosan Biosorbents for Wastewater Treatment: A Review. J. Polym. Environ. 2019, 27, 1389–1403. DOI: 10.1007/s10924-019-01439-6.
  • Mondal, N. K.; Basu, S.; Das, B. Decontamination and Optimization Study of Hexavalent Chromium on Modified Chicken Feather Using Response Surface Methodology. Appl. Water Sci. 2019, 9, 50. DOI: 10.1007/s13201-019-0930-z.
  • Agrahari, S.; Wadhwa, N. Degradation of Chicken Feather a Poultry Waste Product by Keratinolytic Bacteria Isolated from Dumping Site at Ghazipur Poultry Processing Plant. Int. J. Poul. Sci. 2010, 9, 482–489. DOI: 10.3923/ijps.2010.482.489.
  • Arai, K. M.; Takahashi, R.; Yokote, Y.; Akahane, K. Amino-Acid Sequence of Feather Keratin from Fowl. Eur. J. Biochem. 1983, 132, 501–507. DOI: 10.1111/j.1432-1033.1983.tb07389.x.
  • Mittal, J.; Thakur, V.; Mittal, A. Batch Removal of Hazardous Azo Dye Bismark Brown R Using Waste Material Hen Feather. Ecol. Eng. 2013, 60, 249–253. DOI: 10.1016/j.ecoleng.2013.07.025.
  • Mittal, A.; Thakur, V.; Mittal, J.; Vardhan, H. Process Development for the Removal of Hazardous Anionic Azo Dye Congo Red from Wastewater by Using Hen Feather as Potential Adsorbent. Desalination Water Treat. 2014, 52, 227–237. DOI: 10.1080/19443994.2013.785030.
  • Aguayo-Villarreal, I. A.; Bonilla-Petriciolet, A.; Hernandez-Montoya, V.; Montes-Moran, M. A.; Reynel-Avila, H. E. Batch and Column Studies of Zn2+ Removal from Aqueous Solution Using Chicken Feathers as Sorbents. Chem. Eng. J. 2011, 167, 67–76. DOI: 10.1016/j.cej.2010.11.107.
  • Rosa, G. d l.; Reynel-Avila, H. E.; Bonilla-Petriciolet, A.; Cano-Rodríguez, I.; Velasco-Santos, C.; Martinez-Hernandez, A. L. Recycling Poultry Feathers for Pb Removal from Wastewater: Kinetic and Equilibrium Studies. Int. J. Chem. Biomol. Eng. 2008, 1, 185–193. DOI: 10.5281/zenodo.1062126.
  • Liang, S.; Guo, X.; Feng, N.; Tian, Q. Application of Orange Peel Xanthate for the Adsorption of Pb2+ from Aqueous Solutions. J. Hazard Mater. 2009, 170, 425–429. DOI: 10.1016/j.jhazmat.2009.04.078.
  • Wang, N.; Xu, X.; Li, H.; Zhai, J.; Yuan, L.; Zhang, K.; Yu, H. Preparation and Application of a Xanthate-Modified Thiourea Chitosan Sponge for the Removal of Pb(II) from Aqueous Solutions. Ind. Eng. Chem. Res. 2016, 55, 4960–4968. DOI: 10.1021/acs.iecr.6b00694.
  • Chakraborty, R.; Asthana, A.; Singh, A. K.; Yadav, S.; Susan, M. A. B. H.; Carabineiro, S. A. C. Intensified Elimination of Aqueous Heavy Metal Ions Using Chicken Feathers Chemically Modified by a Batch Method. J. Mol. Liq. 2020, 312, 113475. DOI: 10.1016/j.molliq.2020.113475.
  • Zainuddin, M. F.; Shamsudin, R.; Mokhtar, M. N.; Ismail, D. Physicochemical Properties of Pineapple Plant Waste Fibers from the Leaves and Stems of Different Varieties. BioResources 2014, 9, 5311–5324. DOI: 10.15376/biores.9.3.5311-5324.
  • Joshua, J. A.; Ahiekpor, J. C.; Kuyea, A. Nigerian Hardwood (Nesogordoniapapaverifera) Sawdust Characterization: Proximate Analysis, Cellulose and Lignin Contents. Lignocellulose. 2016, 5, 50–58.
  • Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of Chicken Feathers: Characterisation of Chemical Properties. Waste Manag. 2017, 68, 626–635. DOI: 10.1016/j.wasman.2017.06.050.
  • Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta. 2007, 1767, 1073–1101. DOI: 10.1016/j.bbabio.2007.06.004.
  • Anandkumar, J.; Mandal, B. Removal of Cr(VI) from Aqueous Solution Using Bael Fruit (Aegle Marmelos Correa) Shell as an Adsorbent. J. Hazard Mater. 2009, 168, 633–640. DOI: 10.1016/j.jhazmat.2009.02.136.
  • Ratna Kumari, A.; Sobha, K. Optimization and Modeling of Physico-Chemical Factors Affecting the Removal of Copper from Aqueous Solutions Using Feathers of Dromaiusnovaehollandiae. J. Chem. Pharm. Res. 2015, 7, 449–461.
  • Anoop Krishnan, K.; Anirudhan, T. S. Uptake of Heavy Metals in Batch Systems by Sulfurized Steam Activated Carbon Prepared from Sugarcane Bagasse Pith. Ind. Eng. Chem. Res. 2002, 41, 5085–5093. DOI: 10.1021/ie0110181.
  • Rangabhashiyam, S.; Selvaraju, N. Adsorptive Remediation of Hexavalent Chromium from Synthetic Wastewater by a Natural and ZnCl2 Activated Sterculia Guttata Shell. J. Mol. Liq. 2015, 207, 39–49. DOI: 10.1016/j.molliq.2015.03.018.
  • Shakya, A.; Agarwal, T. Removal of Cr(VI) from Water Using Pineapple Peel Derived Biochars: Adsorption Potential and Re-Usability Assessment. J. Mol. Liq. 2019, 293, 111497. DOI: 10.1016/j.molliq.2019.111497.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. DOI: 10.1021/ja02268a002.
  • Freundlich, H. M. F. Uber Die Adsorption in Lasungen. J. Phys. Chem. 1907, 57U, 385–470. DOI: 10.1002/bbpc.19060570837.
  • Temkin, M. Die Gas Adsorption Und Der Nernstschewärmesatz. Acta Physicochim 1934, 1, 36–52.
  • Dubinin, M. M.; Radushkevich, L. V. The Equation of the Characteristic Curve of Activated Charcoal. Proc. Acad. Sci. USSR 1947, 55, 327–329.
  • Lagergren, S. About the Theory of so-Called Adsorption of Soluble Substances, K. Svenska VetenskapsakadHandl 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Weber, W. J.; Morris, J. C. Advances in Water Pollution Research: Removal of Biologically Resistant Pollutants from Waste Waters by Adsorption. Proceedings of International Conference on Water Pollution Symposium. Pergamon Press. 1962, 2, 231–266. DOI: 10.1016/B978-1-4831-9840-6.50021-9.
  • Zhang, H.; Omer, A. M.; Hu, Z.; Yang, L.; Ji, C.; Ouyang, X. Fabrication of Magnetic Bentonite/Carboxymethyl Chitosan/Sodium Alginate Hydrogel Beads for Cu(II) Adsorption. Int. J. Biol. Macromol. 2019, 135, 490–500. DOI: 10.1016/j.ijbiomac.2019.05.199.
  • Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of Hexavalent Chromium in Aqueous Solution on Activated Carbon Prepared from Apple Peels. Sustain. Chem. Pharm. 2018, 7, 9–16. DOI: 10.1016/j.scp.2017.11.003.
  • El-Araby, H. A.; Ibrahim, A. M. M. A.; Mangood, A. H.; Rahman, A. A. H. A. Sesame Husk as Adsorbent for Copper(II) Ions Removal from Aqueous Solution. GEP 2017, 05, 109–152. DOI: 10.4236/gep.2017.57011.
  • Sostaric, T.; Petrovic, M.; Milojkovic, J.; Lacnjevac, C.; Cosovic, A.; Stanojevic, M.; Stojanovic, M. Application of Apricot Stone Waste from Fruit Processing Industry in Environmental Cleanup: Copper Biosorption Study. Fruits 2015, 70, 271–280. DOI: 10.1051/fruits/2015028.
  • Ponou, J.; Kim, J.; Wang, L. P.; Dodbiba, G.; Fujita, T. Sorption of Cr(VI) Anions in Aqueous Solution Using Carbonized or Dried Pineapple Leaves. Chem. Eng. J. 2011, 172, 906–913. DOI: 10.1016/j.cej.2011.06.043.
  • Rosales, E.; Meijide, J.; Tavares, T.; Pazos, M.; Sanromán, M. A. Grapefruit Peelings as a Promising Biosorbent for the Removal of R. Hunt. for Cr Removal from Wastewater by Biosorption. Int. J. Phytoremediation 2016, 17, 1204–1211. DOI: 10.1080/15226514.2015.1138564.
  • Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sust. Energ. Rev. 2018, 87, 1–21. DOI: 10.1016/j.rser.2018.01.003.
  • Gupta, V. K.; Gupta, M.; Sharma, S. Process Development for the Removal of Lead and Chromium from Aqueous Solutions Using Red Mud – an Aluminium Industry Waste. Water Res. 2001, 35, 1125–1134. DOI: 10.1016/S0043-1354(00)00343-5.
  • Solís-Moreno, C. A.; Cervantes-González, E.; Saavedra-Leos, M. Z. Use and Treatment of Chicken Feathers as a Natural Adsorbent for the Removal of Copper in Aqueous Solution. J. Environ. Health Sci. Eng. 2021, 19, 707–720. DOI: 10.1007/s40201-021-00639-4.
  • Sun, P.; Liu, Z.-T.; Liu, Z.-W. Chemically Modified Chicken Feather as Sorbent for Removing Toxic Chromium(VI) Ions. Ind. Eng. Chem. Res. 2009, 48, 6882–6889. DOI: 10.1021/ie900106h.
  • Hosseini, S. A.; Samani, M. R.; Toghraie, D. Removal of Hexavalent Chromium from Aqueous Solution Using Ostrich Feathers Amended by Polyaniline. J. Mater. Res. Technol. 2021, 15, 488–499. DOI: 10.1016/j.jmrt.2021.08.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.