84
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A comparative study of the in vitro antitumor effect of the disulfide-linked and diselenide-linked polyethylene glycol-curcumin nanoparticles

, , , , , , , & show all
Pages 1430-1443 | Received 19 Jan 2023, Accepted 13 May 2023, Published online: 31 May 2023

References

  • Zhi, K.; Yang, H.; Shan, Z.; Huang, K.; Zhang, M.; Xia, X. Dual-Modified Starch Nanospheres Encapsulated with Curcumin by Self-Assembly: Structure, Physicochemical Properties and Anti-Inflammatory Activity. Int. J. Biol. Macromol. 2021, 191, 305–314. DOI: 10.1016/j.ijbiomac.2021.09.117.
  • Yu, F.; Zhang, Y.; Yang, C.; Li, F.; Qiu, B.; Ding, W. Enhanced Transdermal Efficiency of Curcumin-Loaded Peptide-Modified Liposomes for Highly Effective Antipsoriatic Therapy. J. Mater. Chem. B 2021, 9, 4846–4856. DOI: 10.1039/d1tb00557j.
  • Yu, C.; Yang, B.; Najafi, M. Targeting of Cancer Cell Death Mechanisms by Curcumin: Implications to Cancer Therapy. Basic Clin. Pharmacol. Toxicol. 2021, 129, 397–415. DOI: 10.1111/bcpt.13648.
  • Victorelli, F. D.; Salvati Manni, L.; Biffi, S.; Bortot, B.; Buzzá, H. H.; Lutz-Bueno, V.; Handschin, S.; Calixto, G.; Murgia, S.; Chorilli, M.; Mezzenga, R. Potential of Curcumin-Loaded Cubosomes for Topical Treatment of Cervical Cancer. J. Colloid Interface Sci. 2022, 620, 419–430. DOI: 10.1016/j.jcis.2022.04.031.
  • Khayatan, D.; Razavi, S. M.; Arab, Z. N.; Niknejad, A. H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A. H.; Barreto, G. E.; Sahebkar, A. Protective Effects of Curcumin against Traumatic Brain Injury. Biomed. Pharmacother. 2022, 154, 113621. DOI: 10.1016/j.biopha.2022.113621.
  • Abadi, A. J.; Mirzaei, S.; Mahabady, M. K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A. R.; et al. Curcumin and Its Derivatives in Cancer Therapy: Potentiating Antitumor Activity of Cisplatin and Reducing Side Effects. Phytother. Res. 2022, 36, 189–213. DOI: 10.1002/ptr.7305.
  • Barcelos, K. A.; Mendonça, C. R.; Noll, M.; Botelho, A. F.; Francischini, C. R. D.; Silva, M. A. M. Antitumor Properties of Curcumin in Breast Cancer Based on Preclinical Studies: A Systematic Review. Cancers 2022, 14, 2165. DOI: 10.3390/cancers14092165.
  • Chamani, S.; Moossavi, M.; Naghizadeh, A.; Abbasifard, M.; Majeed, M.; Johnston, T. P.; Sahebkar, A. Immunomodulatory Effects of Curcumin in Systemic Autoimmune Diseases. Phytother. Res. 2022, 36, 1616–1632. DOI: 10.1002/ptr.7417.
  • Chircov, C.; Ștefan, R. E.; Dolete, G.; Andrei, A.; Holban, A. M.; Oprea, O. C.; Vasile, B. S.; Neacșu, I. A.; Tihăuan, B. Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics 2022, 14, 1057. DOI: 10.3390/pharmaceutics14051057.
  • Guéguinou, M.; Ibrahim, S.; Bourgeais, J.; Robert, A.; Pathak, T.; Zhang, X.; Crottès, D.; Dupuy, J.; Ternant, D.; Monbet, V.; et al. Curcumin and NCLX Inhibitors Share Anti-Tumoral Mechanisms in Microsatellite-Instability-Driven Colorectal Cancer. Cell. Mol. Life Sci. 2022, 79, 284. DOI: 10.1007/s00018-022-04311-4.
  • Jiang, M.; Qi, Y.; Huang, W.; Lin, Y.; Li, B. Curcumin Reprograms TAMs from a Protumor Phenotype towards an Antitumor Phenotype via Inhibiting MAO-A/STAT6 Pathway. Cells 2022, 11, 3473. DOI: 10.3390/cells11213473.
  • Jin, Z.; Chang, B.; Wei, Y.; Yang, Y.; Zhang, H.; Liu, J.; Piao, L.; Bai, L. Curcumin Exerts Chondroprotective Effects against Osteoarthritis by Promoting AMPK/PINK1/Parkin-Mediated Mitophagy. Biomed. Pharmacother. 2022, 151, 113092. DOI: 10.1016/j.biopha.2022.113092.
  • Bai, C.; Zhao, J.; Su, J.; Chen, J.; Cui, X.; Sun, M.; Zhang, X. Curcumin Induces Mitochondrial Apoptosis in Human Hepatoma Cells through BCLAF1-Mediated Modulation of PI3K/AKT/GSK-3β Signaling. Life Sci. 2022, 306, 120804. DOI: 10.1016/j.lfs.2022.120804.
  • Brinkmann, V.; Romeo, M.; Larigot, L.; Hemmers, A.; Tschage, L.; Kleinjohann, J.; Schiavi, A.; Steinwachs, S.; Esser, C.; Menzel, R.; et al. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel, Switzerland) 2022, 11, 613. DOI: 10.3390/antiox11040613.
  • Chung, H.; Lee, S. W.; Hyun, M.; Kim, S. Y.; Cho, H. G.; Lee, E. S.; Kang, J. S.; Chung, C. H.; Lee, E. Y. Curcumin Blocks High Glucose-Induced Podocyte Injury via RIPK3-Dependent Pathway. Front. Cell Dev. Biol. 2022, 10, 800574. DOI: 10.3389/fcell.2022.800574.
  • Feltrin, F. D. S.; Agner, T.; Sayer, C.; Lona, L. M. F. Curcumin Encapsulation in Functional PLGA Nanoparticles: A Promising Strategy for Cancer Therapies. Adv. Colloid Interface Sci. 2022, 300, 102582. DOI: 10.1016/j.cis.2021.102582.
  • Howaili, F.; Özliseli, E.; Küçüktürkmen, B.; Razavi, S. M.; Sadeghizadeh, M.; Rosenholm, J. M. Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Front. Chem. 2020, 8, 602941. DOI: 10.3389/fchem.2020.602941.
  • Liu, J.; Liu, S.; Wu, Y.; Xu, X.; Li, Q.; Yang, M.; Gong, A.; Zhang, M.; Lu, R.; Du, F. Curcumin Doped Zeolitic Imidazolate Framework Nanoplatforms as Multifunctional Nanocarriers for Tumor Chemo/Immunotherapy. Biomater. Sci. 2022, 10, 2384–2393. DOI: 10.1039/d2bm00149g.
  • Farhoudi, L.; Kesharwani, P.; Majeed, M.; Johnston, T. P.; Sahebkar, A. Polymeric Nanomicelles of Curcumin: Potential Applications in Cancer. Int. J. Pharm. 2022, 617, 121622. DOI: 10.1016/j.ijpharm.2022.121622.
  • Ma, Z.; Gao, X.; Raza, F.; Zafar, H.; Huang, G.; Yang, Y.; Shi, F.; Wang, D.; He, X. Design of GSH-Responsive Curcumin Nanomicelles for Oesophageal Cancer Therapy. Pharmaceutics 2022, 14, 1802. DOI: 10.3390/pharmaceutics14091802.
  • Mahmoudi, A.; Kesharwani, P.; Majeed, M.; Teng, Y.; Sahebkar, A. Recent Advances in Nanogold as a Promising Nanocarrier for Curcumin Delivery. Colloids Surf. B Biointerfaces 2022, 215, 112481. DOI: 10.1016/j.colsurfb.2022.112481.
  • Wei, T.; Zhang, Y.; Lei, M.; Qin, Y.; Wang, Z.; Chen, Z.; Zhang, L.; Zhu, Y. Development of Oral Curcumin Based on pH-Responsive Transmembrane Peptide-Cyclodextrin Derivative Nanoparticles for Hepatoma. Carbohydr. Polym. 2022, 277, 118892. DOI: 10.1016/j.carbpol.2021.118892.
  • Yan, J. K.; Wang, Z. W.; Zhu, J.; Liu, Y.; Chen, X.; Li, L. Polysaccharide-Based Nanoparticles Fabricated from Oppositely Charged Curdlan Derivatives for Curcumin Encapsulation. Int. J. Biol. Macromol. 2022, 213, 923–933. DOI: 10.1016/j.ijbiomac.2022.05.179.
  • Zeng, X.; Zhang, Y.; Xu, X.; Chen, Z.; Ma, L.; Wang, Y.; Guo, X.; Li, J.; Wang, X. Construction of pH-Sensitive Targeted Micelle System Co-Delivery with Curcumin and Dasatinib and Evaluation of Anti-Liver Cancer. Drug Deliv. 2022, 29, 792–806. DOI: 10.1080/10717544.2022.2048132.
  • Lai, C.; Hu, H.; Xu, D. Encapsulation and Delivery of Dimethylcurcumin by Using Nanoparticles of a Polyethylene-Glycol-Based Dimethylcurcumin Prodrug. Chemistryselect 2021, 6, 3013–3021. DOI: 10.1002/slct.202100239.
  • Augustine, R.; Kim, D. K.; Kalva, N.; Eom, K. H.; Kim, J. H.; Kim, I. Multi-Stimuli-Responsive Nanomicelles Fabricated Using Synthetic Polymer Polylysine Conjugates for Tumor Microenvironment Dependent Drug Delivery. J. Mater. Chem. B 2020, 8, 5745–5755. DOI: 10.1039/d0tb00721h.
  • Dong, X.; Brahma, R. K.; Fang, C.; Yao, S. Q. Stimulus-Responsive Self-Assembled Prodrugs in Cancer Therapy. Chem. Sci. 2022, 13, 4239–4269. DOI: 10.1039/d2sc01003h.
  • Hu, H.; Li, Y.; Zhou, Q.; Ao, Y.; Yu, C.; Wan, Y.; Xu, H.; Li, Z.; Yang, X. Redox-Sensitive Hydroxyethyl Starch-Doxorubicin Conjugate for Tumor Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 30833–30844. DOI: 10.1021/acsami.6b11932.
  • Bai, Y.; Li, X.; Li, M.; Shang, Q.; Yang, J.; Fan, L.; Tian, W. Host-Guest Interaction-Based Supramolecular Prodrug Self-Assemblies for GSH-Consumption Augmented Chemotherapy. J. Mater. Chem. B 2022, 10, 4952–4958. DOI: 10.1039/d2tb00989g.
  • Shu, W.; Yu, J.; Wang, H.; Yu, A.; Xiao, L.; Li, Z.; Zhang, H.; Zhang, Y.; Wu, Y. Rational Design of a Reversible Fluorescent Probe for Sensing GSH in Mitochondria. Anal. Chim. Acta 2022, 1220, 340081. DOI: 10.1016/j.aca.2022.340081.
  • Zhao, J.; Wang, Z.; Zhong, M.; Xu, Q.; Li, X.; Chang, B.; Fang, J. Integration of a Diselenide Unit Generates Fluorogenic Camptothecin Prodrugs with Improved Cytotoxicity to Cancer Cells. J. Med. Chem. 2021, 64, 17979–17991. DOI: 10.1021/acs.jmedchem.1c01362.
  • Zhu, R.; He, Q.; Li, Z.; Ren, Y.; Liao, Y.; Zhang, Z.; Dai, Q.; Wan, C.; Long, S.; Kong, L.; et al. ROS-Cleavable Diselenide Nanomedicine for NIR-Controlled Drug Release and On-Demand Synergistic Chemo-Photodynamic Therapy. Acta Biomater. 2022, 153, 442–452. DOI: 10.1016/j.actbio.2022.09.061.
  • Fan, Z.; Yan, Q.; Song, J.; Wei, J. Reactive Human Plasma Glutathione Peroxidase Mutant with Diselenide Bond Succeeds in Tetramer Formation. Antioxidants (Basel, Switzerland) 2022, 11, 1083. DOI: 10.3390/antiox11061083.
  • Sun, L. J.; Yuan, H.; Yu, L.; Gao, S. Q.; Wen, G. B.; Tan, X.; Lin, Y. W. Structural and Functional Regulations by a Disulfide Bond Designed in Myoglobin like Human Neuroglobin. Chem. Commun. (Camb.) 2022, 58, 5885–5888. DOI: 10.1039/d2cc01753a.
  • Pan, Z.; Yang, G.; Yuan, J.; Pan, M.; Li, J.; Tan, H. Effect of the Disulfide Bond and Polyethylene Glycol on the Degradation and Biophysicochemical Properties of Polyurethane Micelles. Biomater. Sci. 2022, 10, 794–807. DOI: 10.1039/d1bm01422f.
  • Kuang, X.; Chi, D.; Li, J.; Guo, C.; Yang, Y.; Zhou, S.; Luo, C.; Liu, H.; He, Z.; Wang, Y. Disulfide Bond Based Cascade Reduction-Responsive Pt(IV) Nanoassemblies for Improved Anti-Tumor Efficiency and Biosafety. Colloids Surf. B Biointerfaces 2021, 203, 111766. DOI: 10.1016/j.colsurfb.2021.111766.
  • Cui, X.; Du, K.; Yuan, X.; Xiao, W.; Tao, Y.; Xu, D.; Hu, H. A Comparative Study of the In Vitro Antitumor Effect of Mannose-Doxorubicin Conjugates with Different Linkers. Drug Dev. Res. 2022, 83, 646–658. DOI: 10.1002/ddr.21896.
  • He, X.; Hong, J.; Liu, S.; Xu, D.; Hu, H. Hydroxyethyl Starch-New Indocyanine Green Conjugates for Enhanced Cancer Photodynamic Therapy. Carbohydr. Res. 2021, 508, 108416. DOI: 10.1016/j.carres.2021.108416.
  • Sauraj; Kumar, S. U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y. S. pH-Responsive Prodrug Nanoparticles Based on Xylan-Curcumin Conjugate for the Efficient Delivery of Curcumin in Cancer Therapy. Carbohydr. Polym. 2018, 188, 252–259. DOI: 10.1016/j.carbpol.2018.02.006.
  • Tabatabaei Mirakabad, F. S.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. A Comparison between the Cytotoxic Effects of Pure Curcumin and Curcumin-Loaded PLGA-PEG Nanoparticles on the MCF-7 Human Breast Cancer Cell Line. Artif. Cells Nanomed. Biotechnol. 2016, 44, 423–430. DOI: 10.3109/21691401.2014.955108.
  • Alam, J.; Dilnawaz, F.; Sahoo, S. K.; Singh, D. V.; Mukhopadhyay, A. K.; Hussain, T.; Pati, S. Curcumin Encapsulated into Biocompatible Co-Polymer PLGA Nanoparticle Enhanced Anti-Gastric Cancer and anti-Helicobacter Pylori Effect. Asian Pac. J. Cancer Prev. 2022, 23, 61–70. DOI: 10.31557/APJCP.2022.23.1.61.
  • Habib, S. M.; Rehman, J.; Maharjan, R.; Kanwal, T.; Althagafi, I. I.; Saifullah, S.; Ullah, S.; Simjee, S. U.; Shah, M. R. Synthesis of Lactobionic Acid Based Bola-Amphiphiles and Its Application as Nano-Carrier for Curcumin Delivery to Cancer Cell Cultures In-Vitro. Int. J. Pharm. 2020, 590, 119897. DOI: 10.1016/j.ijpharm.2020.119897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.