63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficient adsorption of cationic and anionic dyes on Algerian natural phosphate

, &
Pages 1265-1280 | Received 16 Feb 2023, Accepted 04 Jul 2023, Published online: 30 Jul 2023

References

  • Pandey, S.; Ramontja, J. Natural Bentonite Clay and Its Composites for Dye Removal, Current State and Future Potential. J. Am. J. Chem. Appl. 2016, 3, 8–19. http://www.openscienceonline.com/journal/ajca.
  • Mohamadreza Masoudinejad, M.; Ghaderpoori, M.; Zarei, A.; Nasehifar, J.; Malekzadeh, A.; Nasiri, J.; Ghaderpoury, A. Data on Phosphorous Concentration of Rivers Feeding into Taham Dam in Zanjan, Iran. Data Brief 2018, 17, 564–569. DOI: 10.1016/j.dib.2018.01.068.
  • Weng, C. H.; Pan, Y. F. Adsorption of a Cationic Dye (Methylene Blue) onto Spent Activated Clay. J. Hazard. Mater. 2007, 144, 355–362. DOI: 10.1016/j.jhazmat.2006.09.097.
  • Pandey, S.; Ramontja, J. Recent Modifications of Bentonite Clay for Adsorption Applications. Focus Sci. 2016, 2, 1–10. DOI: 10.21859/focsci-020455.
  • Abuzerr, S.; Darwish, M.; M, A. H. Simultaneous Removal of Cationic Methylene Blue and Anionic Reactive Red 198 Dyes Using Magnetic Activated Carbon Nanoparticles: Equilibrium, and Kinetics Analysis. Water. Sci. Technol. 2018, 2017, 534–545. DOI: 10.2166/wst.2018.145.
  • Ahmed, M.; Gasser, M. S. Adsorption Study of Anionic Reactive Dye from Aqueous Solution to Mg–Fe–CO3 Layered Double Hydroxide (LDH). Appl. Surf. Sci. 2012, 259, 650–656. DOI: 10.1016/j.apsusc.2012.07.092.
  • Fu, Y.; Viraraghavan, T. Fungal Decolorization of Dye Wastewaters: A Review. Bioresour. Technol. 2001, 79, 251–262. DOI: 10.1016/s0960-8524(01)00028-1.
  • Xi, Y.; Shen, Y.; Yang, F.; Yang, G.; Liu, C.; Zhang, Z.; Zhu, D. J. Removal of Azo Dye from Aqueous Solution by a New Biosorbent Prepared with Aspergillus nidulans Cultured in Tobacco Wastewater. Taiwan Inst. Chem. Eng. 2013, 44, 815–820. DOI: 10.1016/j.jtice.2013.01.031.
  • Singh, K. P.; Gupta, S.; Singh, A. K.; Sinha, S. Optimizing Adsorption of Crystal Violet Dye from Water by Magnetic Nanocomposite Using Response Surface Modeling Approach. J. Hazard. Mater. 2011, 186, 1462–1473. DOI: 10.1016/j.jhazmat.2010.12.032.
  • El-Ashtoukhy, E.; Fouad, Y. O. Optimizing Adsorption of Crystal Violet Dye from Water by Magnetic Nanocomposite Using Response Surface Modeling Approach. Alex. Eng. J. 2015, 54, 77–81. DOI: 10.1016/j.aej.2014.11.007.
  • Doğan, M.; Abak, H.; Alkan, M. Adsorption of Methylene Blue onto Hazelnut Shell: Kinetics, Mechanism and Activation Parameters. J. Hazard. Mater. 2009, 164, 172–181. DOI: 10.1016/j.jhazmat.2008.07.155.
  • Khouni, I.; Marrot, B.; Ben Amar, R. Treatment of Reconstituted Textile Wastewater Containing a Reactive Dye in an Aerobic Sequencing Batch Reactor Using a Novel Bacterial Consortium. Sep. Purif. Technol. 2012, 87, 110–119. DOI: 10.1016/j.seppur.2011.11.030.
  • Laghrib, F.; Saqrane, S.; Lahrich, S.; Abderrahim El Mhammedi, M. Electrochemical Reduction of Neonicotinoids Insecticides Catalysed by Metallic Silver: Case of the Detection of Imidacloprid in Tomato and Orange Juices. Int. J. Environ. Anal. Chem. 2021, 101, 1–10. DOI: 10.1080/03067319.2019.1678603.
  • Ristić, I.; Zdravković, A.; Mičić, A.; Marković, N. D.; Ristić, N. Ecological Alternatives to Conventional Dyeing of Cotton with Reactive Dyes. Zaštita Materijala 2020, 61, 60–68. DOI: 10.5937/zasmat2001060R.
  • Akrout, H.; Jellali, S.; Bousselmi, L. Enhancement of Methylene Blue Removal by Anodic Oxidation Using BDD Electrode Combined with Adsorption onto Sawdust. CR. Chim. 2015, 18, 110–120. DOI: 10.5937/zasmat2001060R.
  • Mohsen Alardhi, S.; Albayati, M.; Alrubaye, J. M. A Hybrid Adsorption Membrane Process for Removal of Dye from Synthetic and Actual Wastewater. Chem. Eng. Process.: Process Intensif. 2020, 157, 108113. DOI: 10.1016/j.cep.2020.108113.
  • Samarghandi, M. R.; Zarrabi, M.; Amrane, A.; Noori Sepehr, M. N.; Noroozi, M.; Namdarirei, S.; Zarei, A. Kinetic of Degradation of Two Azo Dyes from Aqueous Solutions by Zero Iron Powder: Determination of the Optimal Conditions. Desal. Water Treat. 2012, 40, 137–143. DOI: 10/5004/dwt.2012.2746.
  • Mojtabavi, S.; Khoshayand, M. R.; Fazeli, M. R.; Samadi, N.; Faramarzi, M. A. A Combination of Thermal and Biological Treatments for Bio-Removal and Detoxification of Some Recalcitrant Synthetic Dyes by Betaine-Induced Thermos Stabilized Laccase. Environ. Technol. Innov. 2020, 20, 101046. DOI: 10.1016/j.eti.2020.101046.
  • Deb, A.; Kanmani, M.; Debnath, A.; Bhowmik, K. L.; Saha, B. Ultrasonic Assisted Enhanced Adsorption of Methyl Orange Dye onto Polyaniline Impregnated Zinc Oxide Nanoparticles: Kinetic, Isotherm and Optimization of Process Parameters. Ultrason. Sonochem. 2019, 54, 290–301. DOI: 10.1016/j.ultsonch.2019.01.028.
  • Mall, D.; Srivastava, V. C.; Agarwal, N. K. Removal of Orange-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash—Kinetic Study and Equilibrium Isotherm Analyses. J. Dyes Pig. 2006, 69, 210–223. DOI: 10.1016/j.dyepig.2005.03.013.
  • Namasivayam, C.; Dinesh Kumar, M.; Selvi, K.; Ashruffunissa, R.; Vanathi, T.; Yamuna, R. T. Waste’coir Pith—A Potential Biomass for the Treatment of Dyeing Wastewaters. Biomass Bioenerg. 2001, 21, 477–483. DOI: 10.1016/S0961-9534(01)00052-6.
  • Arif, M.; Liu, G.; Yousaf, B.; Ahmed, R.; Irshad, S.; Ashraf, A.; Zia-Ur-Rehman, M.; Rashid, M. S. Synthesis, Characteristics and Mechanistic Insight into the Clays and Clay Minerals-Biochar Surface Interactions for Contaminants removal-A Review. J. Clean. Prod. 2021, 310, 127548. DOI: 10.1016/j.jclepro.2021.127548.
  • Giani, V. B.; Sérgio, L.; Edson, L. F.; Guilherme, L. D. Highly Efficient and Reusable Mesoporous Zeolite Synthetized from a Biopolymer for Cationic Dyes Adsorption. Colloids Surf. A: Physicochem. Eng. Asp. 2018, 556, 43–50. DOI: 10.1016/j.colsurfa.2018.08.019.
  • Aklil, A.; Mouflih, M.; Sebti, S. Removal of Heavy Metal Ions from Water by Using Calcined Phosphate as a New Adsorbent. J. Hazard. Mater. 2004, 112, 183–190. DOI: 10.1016/j.jhazmat.2004.05.018.
  • Saxena, S.; Souza, S. D. Heavy Metal Pollution Abatement Using Rock Phosphate Mineral. Environ. Int. 2006, 32, 199–202. DOI: 10.1016/j.envint.2005.08.011.
  • Keleş, E.; Kadir Özer, A.; Yörük, S. Removal of Pb2+ from Aqueous Solutions by Rock Phosphate (Low-Grade). Desalination 2010, 253, 124–128. DOI: 10.1016/j.desal.2009.11.021.
  • Daik, R.; Lajnef, M.; Amor, S. B.; Ezzaouia, H. Effect of the Temperature and the Porosity of the Gettering Process on the Removal of Heavy Metals from Tunisian Phosphate Rock. Results Phys. 2017, 7, 4189–4194. DOI: 10.1016/j.rinp.2017.10.050.
  • He, X.; Zhang, J.; Ren, Y.; Sun, C.; Deng, X.; Qian, M.; Hu, Z.; Li, R.; Chen, Y.; Shen, Z.; Xia, Y. Xian. Polyaspartate and Liquid Amino Acid Fertilizer Are Appropriate Alternatives for Promoting the Phytoextraction of Cadmium and Lead in Solanum Nigrum. Chemosphere 2019, 237, 124483. DOI: 10.1016/j.chemosphere.2019.124540.
  • Barka, N.; Assabbane, A.; Nounah, A.; Laanab, L.; Ichou, Y. A. Removal of Textile Dyes from Aqueous Solutions by Natural Phosphate as a New Adsorbent. Desalination 2009, 235, 264–275. DOI: 10.1016/j.desal.2008.01.015.
  • Graba, Z.; Hamoudi, S.; Bekka, D.; Bezzi, N.; Boukherrou, R. Influence of Adsorption Parameters of Basic Red Dye 46 by the Rough and Treated Algerian Natural Phosphates. J. Ind. Eng. Chem. 2015, 25, 229–238. DOI: 10.1016/j.jiec.2014.10.039.
  • Bensalah, H.; Bekheet, M. F.; Younssi, S. A.; Ouammou, M.; Gurlo, A. Removal of Cationic and Anionic Textile Dyes with Moroccan Natural Phosphate. J. Environ. Chem. Eng. 2017, 5, 2189–2199. DOI: 10.1016/j.jece.2017.04.021.
  • El Boujaady, H.; EL Bakri, A.; Mourabet, M.; EL Rhilassi, A.; Bennani-Ziatni, M. R.; El Hamri, A. Ability of Moroccan Natural Phosphates to Remove Textile Dyes from Aqueous Solutions. J. Mater. Environ. Sci. 2019, 10, 254–265. http://www.jmaterenvironsci.com.
  • Villacañas, F.; Fernando, R. P.; Órfão, M.; Figueiredo, J. L. Adsorption of Simple Aromatic Compounds on Activated Carbons. J. Colloid Interface Sci. 2006, 293, 128–136. DOI: 10.1016/j.jcis.2005.06.032.
  • Meski, S.; Khireddine, H.; Ziani, S. Removal of Lead Ions by Hydroxyapatite Prepared from the Eggshell. J. Chem. Eng. Data 2010, 55, 3923–3928. DOI: 10.1021/je901070e.
  • Ferreira, B. C. S.; Teodoro, F. S.; Mageste, A. B.; Gil, L. F.; de Freitas, R. P.; Gurgel, L. V. A. Application of a New Carboxylate-Functionalized Sugarcane Bagasse for Adsorptive Removal of Crystal Violet from Aqueous Solution: Kinetic, Equilibrium and Thermodynamic Studies. Ind. Crops Prod. 2015, 65, 521–534. DOI: 10.1016/j.indcrop.2014.10.020.
  • Dehghani, M. H.; Karri, R. R.; Alimohammadi, M.; Nazmara, S.; Zarei, A.; Saeedi, Z. Insights into Endocrine-Disrupting Bisphenol-A Adsorption from Pharmaceutical Effluent by Chitosan Immobilized Nanoscale Zero-Valent Iron Nanoparticles. J. Mol. Liq. 2020, 311, 113317. DOI: 10.1016/j.molliq.2020.113317.
  • Gómez, V.; Larrechi, M. S.; Callao, M. P. Kinetic and Adsorption Study of Acid Dye Removal Using Activated Carbon. Chemosphere 2007, 69, 1151–1158. DOI: 10.1016/j.chemosphere.2007.03.076.
  • Vasanth Kumar, K.; Ramamurthi, V.; Sivanesan, S. Modeling the Mechanism Involved during the Sorption of Methylene Blue onto Fly Ash. J. Colloid Interface Sci. 2005, 284, 14–21. DOI: 10.1016/j.jcis.2004.09.063.
  • McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124. DOI: 10.1021/je901070e.
  • Abdel-Zaher Abouzeid, M. Physical and Thermal Treatment of Phosphate Ores - An Overview. Int. J. Miner. Process 2008, 85, 59–84. DOI: 10.1016/j.minpro.2007.09.001.
  • Salazar-Rabago, J. J.; Leyva-Ramos, R.; Rivera-Utrilla, R.; Ocampo-Perez, R.; Cerino-Cordova, F. Biosorption Mechanism of Methylene Blue from Aqueous Solution, onto White Pine (Pinus Durangensis) Sawdust: Effect of Operating Conditions. J. Sustainable Environ. Res. 2017, 27, 32–40. DOI: 10.1016/j.serj.2016.11.009.
  • Zazycki, M. A.; Godinho, M.; Perondi, D.; Foletto, E. L.; Collazzo, G. C.; Dotto, G. L. New Biochar from Pecan Nutshells as an Alternative Adsorbent for Removing Reactive Red 141 from Aqueous Solutions. J. Clean. Prod. 2018, 171, 57–65. DOI: 10.1016/j.jclepro.2017.10.007.
  • Subramani, S. E.; Thinakaran, N. Isotherm, Kinetic and Thermodynamic Studies on the Adsorption Behaviour of Textile Dyes onto Chitosan. Proc. Saf. Environ. Prot. 2017, 106, 1–10. 2017 DOI: 10.1016/j.psep.2016.11.024.
  • Senthil Kumar, P.; Palaniyappan, M.; Priyadharshini, M.; Vignesh, A. M.; Thanjiappan, A.; Ebastina Anne Fernando, P.; Tanvir Ahmed, R.; Srinath, R. Adsorption of Basic Dye onto Raw and Surface‐Modified Agricultural Waste. Environ. Prog. Sustainable Energy 2014, 33, 87–98. DOI: 10.1002/ep.11756.
  • Yagub, M. T.; Sen, T. K.; Ang, H. M. Equilibrium, Kinetics, and Thermodynamics of Methylene Blue a4dsorption by Pine Tree Leaves. Water Air Soil Pollut. 2012, 223, 5267–5282. DOI: 10.1016/j.molliq.2016.02.073.
  • Afroze, S.; Sen, T. K.; Ang, M.; Nishioka, H. Adsorption of Methylene Blue Dye from Aqueous Solution by Novel Biomass Eucalyptus Sheathiana Bark: Equilibrium, Kinetics, Thermodynamics and Mechanism. Desalin. Water. Treat. 2016, 57, 5858–5878. DOI: 10.1080/19443994.2015.1004115.
  • Ren, X.; Xiao, W.; Zhang, R.; Shang, Y.; Han, R. Adsorption of Crystal Violet from Aqueous Solution by Chemically Modified Phoenix Tree Leaves in Batch Mode. J. Desalin. Water. Treat. 2013, 53, 1–11. DOI: 10.1080/19443994.2013.859105.
  • Weng, C. H.; Lin, Y. T.; Tzeng, T. W. Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pineapple Leaf Powder. J. Hazard. Mater. 2009, 170, 417–424. DOI: 10.1016/j.jhazmat.2009.04.080.
  • Kumar, K. V.; Porkodi, K.; Rocha, F. Isotherms and Thermodynamics by Linear and Non-Linear Regression Analysis for the Sorption of Methylene Blue onto Activated Carbon: Comparison of Various Error Functions. J. Hazard. Mater. 2008, 151, 794–804. DOI: 10.1016/j.jhazmat.2007.06.056.
  • Guesmi, Y.; Agougui, H.; Lafi, R.; Jabli, M.; Hafiane, A. Synthesis of Hydroxyapatite-Sodium Alginate via a co-Precipitation Technique for Efficient Adsorption of Methylene Blue Dye. J. Mol. Liq. 2018, 249, 912–920. DOI: 10.1016/j.molliq.2017.11.113.
  • Raval, N. P.; Shah, P. U.; Shah, N. K. Malachite Green “a Cationic Dye” and Its Removal from Aqueous Solution by Adsorption. Appl. Water Sci. 2017, 7, 3407–3445. DOI: 10.1007/s13201-016-0512-2.
  • Atun, G.; Hisarli, G.; Sheldrick, W. S.; Muhler, M. Adsorptive Removal of Methylene Blue from Colored Effluents on Fuller’s Earth. J. Colloid Interface Sci. 2003, 261, 32–39. DOI: 10.1016/s0021-9797(03)00059-6.
  • Hameed, B. H.; Ahmad, A. Batch Adsorption of Methylene Blue from Aqueous Solution by Garlic Peel, an Agricultural Waste Biomass. J. Hazard Mater. 2009, 164, 870–875. DOI: 10.1016/j.jhazmat.2008.08.084.
  • Chai, W.; Huang, Y.; Han, G.; Liu, J.; Yang, S.; Cao, Y. An Enhanced Study on Adsorption of Al(III) onto Bentonite and Kaolin: Kinetics, Isotherms, and Mechanisms. Miner. Process. Extr. Metall. Rev. 2017, 38, 106–115. DOI: 10.1080/08827508.2016.1262862.
  • Azzaz, A. A.; Jellali, S.; Akrout, H.; Assadi, A. A.; Bousselmi, L. Optimization of a Cationic Dye Removal by a Chemically Modified Agriculture by-Product Using Response Surface Methodology: Biomasses Characterization and Adsorption Properties. Environ. Sci. Pollut. Res. Int. 2017, 24, 9831–9846. DOI: 10.1007/s11356-016-7698-6.
  • Robati, D.; Mirza, B.; Ghazisaeidi, R.; Rajabi, M.; Moradi, O.; Agarwal, S.; Gupta, V. K.; Tyagi, L. Adsorption Behavior of Methylene Blue Dye on Nanocomposite Multi-Walled Carbon Nanotube Functionalized Thiol (MWCNT-SH) as New Adsorbent. J. Mol. Liq. 2016, 216, 830–835. DOI: 10.1016/j.molliq.2016.02.004.
  • Naghmouchi, N.; Nahdi, K. Adsorption of Textile Dyes on Raw Tunisian Clay: Equilibrium, Kinetics and Thermodynamics. J. Adv. Chem. 2015, 18, 3685–3697. DOI: 10.24297/jac.v11i6.857.
  • Annadurai, G.; Juang, R. S.; Lee, D. J. Use of Cellulose-Based Wastes for Adsorption of Dyes from Aqueous Solutions. J. Hazard. Mater. 2002, 92, 263–274. DOI: 10.1016/s0304-3894(02)00017-1.
  • Shao-Hua, H.; Shen-Chih, H. Kinetics of Ionic Dyes Adsorption with Magnetic-Modified Sewage Sludge. Environ. Prog. Sustainable Energy 2014, 33, 905–912. DOI: 10.1002/ep.11872.
  • Kyzas, G. Z.; Lazaridis, N. K.; Mitropoulos, A. C. Removal of Dyes from Aqueous Solutions with Untreated Coffee Residues as Potential Low-Cost Adsorbents: Equilibrium, Reuse and Thermodynamic Approach. Chem. Eng. J. 2012, 189–190, 148–159. DOI: 10.1016/j.cej.2012.02.045.
  • Han, R.; Zhang, J.; Han, P.; Wang, Y.; Zhao, Z.; Tang, M. Study of Equilibrium, Kinetic and Thermodynamic Parameters about Methylene Blue Adsorption onto Natural Zeolite. Chem. Eng. J. 2009, 145, 496–504. DOI: 10.1016/j.cej.2008.05.003.
  • Manjun, L.; Lihui, Y.; Yifeng, S.; Lei, Y.; Jie, S. Efficient Adsorption of Anionic Dyes by Ammoniated Waste Polyacrylonitrile Fiber: Mechanism and Practicability. ACS Omega 2021, 6, 19506–19516. DOI: 10.1021/acsomega.1c01780.
  • Sarat Chandra, T.; Mudliar, S. N.; Vidyashankar, S.; Mukherji, S.; Sarada, R.; Krishnamurthi, K.; Chauhan, V. S. Defatted Algal Biomass as a Non-Conventional Low-Cost Adsorbent: Surface Characterization and Methylene Blue Adsorption Characteristics. Bioresour. Technol. 2015, 184, 395–404. DOI: 10.1016/j.biortech.2014.10.018.
  • Lonappan, L.; Rouissi, T.; Das, R. K.; Brar, S. K.; Ramirez, A. A.; Verma, M.; Surampalli, R. Y.; Valero, J. R. Adsorption Ofmethylene Blue on Biochar Microparticles Derived from Different Waste Materials. Waste Manag. 2016, 49, 537–544. DOI: 10.1016/j.wasman.2016.01.015.
  • Kumar, K. V. Optimum Sorption Isotherm by Linear and Non-Linear Methods for Malachite Green onto Lemon Peel. Dyes Pigm. 2007, 74, 595–597. DOI: 10.1016/j.dyepig.2006.03.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.