Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 73, 2024 - Issue 4
133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Convergence rate of the relaxed CQ algorithm under Hölderian type error bound property

, , &
Pages 1285-1301 | Received 02 Apr 2022, Accepted 13 Nov 2022, Published online: 12 Dec 2022

References

  • Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numer Algorithms. 1994;8(2–4):221–239.
  • Stark H, editor. Image recovery theory and application. Orlando (FL): Academic Press Inc.; 1987.
  • Censor Y, Elfving T, Kopf N, et al. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 2005;21(6):2071–2084.
  • Byrne CL. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002;18(2):441–453.
  • López G, Martín-Márquez V, Wang F, et al. Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 2012;28(8):Article ID 085004, 18.
  • Wang J, Hu Y, Li C, et al. Linear convergence of cq algorithms and applications in gene regulatory network inference. Inverse Probl. 2017;33(5):Article ID 055017, 25.
  • Xu H-K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 2010;26(10):Article ID 105018, 17.
  • Yang Q. On variable-step relaxed projection algorithm for variational inequalities. J Math Anal Appl. 2005;302(1):166–179.
  • Bauschke HH, Borwein JM. On projection algorithms for solving convex feasibility problems. SIAM Rev. 1996;38(3):367–426.
  • Yang Q. The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 2004;20(4):1261–1266.
  • Fukushima M. A relaxed projection method for variational inequalities. Math Program. 1986;35(1):58–70.
  • Aspelmeier T, Charitha C, Luke DR. Local linear convergence of the ADMM/Douglas–Rachford algorithms without strong convexity and application to statistical imaging. SIAM J Imaging Sci. 2016;9(2):842–868.
  • Burke JV, Deng S. Weak sharp minima revisited. I. Basic theory. Control Cybernet. 2002;31(3):439–469. Well-posedness in optimization and related topics (Warsaw, 2001).
  • Hu Y, Li C, Yang X. On convergence rates of linearized proximal algorithms for convex composite optimization with applications. SIAM J Optim. 2016;26(2):1207–1235.
  • Li C, Meng L, Peng L, et al. Weak sharp minima for convex infinite optimization problems in normed linear spaces. SIAM J Optim. 2018;28(3):1999–2021.
  • Borwein JM, Li G, Yao L. Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets. SIAM J Optim. 2014;24(1):498–527.
  • Kruger A, Lopez M, Yang X, et al. Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization. Set-Valued Var Anal. 2019;27(4):995–1023.
  • Klatte D. Hoffman's error bound for systems of convex inequalities. In: Mathematical programming with data perturbations. New York: Dekker; 1998. p. 185–199. (Lecture notes in pure and Appl. Math.; Vol. 195).
  • Lewis AS, Pang J-S. Error bounds for convex inequality systems. In: Generalized convexity, generalized monotonicity: recent results (Luminy, 1996). Dordrecht: Kluwer Acad. Publ.; 1998. p. 75–110. (Nonconvex Optim. Appl.; Vol. 27).
  • Li G, Mordukhovich BS. Hölder metric subregularity with applications to proximal point method. SIAM J Optim. 2012;22(4):1655–1684.
  • Li G, Mordukhovich BS, Nghia TTA, et al. Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates. Math Program Ser B. 2018;168(1-2):313–346.
  • Luo X-D, Luo Z-Q. Extension of Hoffman's error bound to polynomial systems. SIAM J Optim. 1994;4(2):383–392.
  • Bauschke HH, Combettes PL. Convex analysis and monotone operator theory in Hilbert spaces. New York: Springer Science + Business Media; 2011.
  • Polyak BT. Introduction to optimization. Moscow: Nauka; 1983.
  • Luo Z-Q, Tseng P. Error bounds and convergence analysis of feasible descent methods: a general approach. Ann Oper Res. 1993;46/47:157–178. Degeneracy in optimization problems.
  • Pang J-S. Error bounds in mathematical programming. Math Program Ser B. 1997;79(1–3):299–332. Lectures on mathematical programming (ISMP97) (Lausanne, 1997).
  • Hoffman AJ. On approximate solutions of systems of linear inequalities. J Res Nat Bur Stand. 1952;49:263–265.
  • Ngai HV, Théra M. Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math Program Ser B. 2009;116(1–2):397–427.
  • Wu Z, Ye JJ. On error bounds for lower semicontinuous functions. Math Program Ser A. 2002;92(2):301–314.
  • Li G. On the asymptotically well behaved functions and global error bound for convex polynomials. SIAM J Optim. 2010;20(4):1923–1943.
  • Li G, Mordukhovich BS, Phạm TS. New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math Program Ser A. 2015;153(2):333–362.
  • Gao T, Li C, Wang J, et al. Relative regularity conditions and bounded linear regularity properties for split feasibility problems in normed linear spaces. Submitted.
  • Bauschke HH, Noll D, Phan HM. Linear and strong convergence of algorithms involving averaged nonexpansive operators. J Math Anal Appl. 2015;421:1–20.
  • Borwein JM, Li G, Tam MK. Convergence rate analysis for averaged fixed point iterations in common fixed point problems. SIAM J Optim. 2017;27(1):1–33.
  • Byrne CL, Moudafi A. Extensions of the CQ algorithm for the split feasibility and split equality problems. J Nonlinear Convex Anal. 2017;18(8):1485–1496.
  • Tian T, Shi L, Chen R. Linear convergence of the relaxed gradient projection algorithm for solving the split equality problems in Hilbert spaces. J Inequal Appl. 2019;2019(1):1–12.
  • Candes EJ, Tao T. Decoding by linear programming. IEEE Trans Inform Theory. 2005;51(12):4203–4215.
  • Li W. Error bounds for piecewise convex quadratic programs and applications. SIAM J Control Optim. 1995;33(5):1510–1529.
  • Hu Y, Li C, Meng K, et al. Group sparse optimization via ℓp,q regularization. J Mach Learn Res. 2017;18(1):960–1011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.