1,295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of fecal microbial transplant (FMT) between male and female rats on methamphetamine-induced hyperthermia

, , , , & ORCID Icon
Article: 2159072 | Received 12 Oct 2022, Accepted 10 Dec 2022, Published online: 29 Dec 2022

References

  • U.S. Drug Enforcement Administration, Diversion Control Division. 2021. National forensic laboratory information system: NFLISDrug 2020 annual report. Springfield (VA): U.S. Drug Enforcement Administration.
  • Krasnova IN, Cadet JL. Methamphetamine toxiciyt and messengers of death. Brain Res Rev. 2009;60(2):379–407.
  • Chomchai C, Chomchai S. Global patterns of methamphetamine use. Curr Opin Psychiatry. 2015;28(4):269–274.
  • Jones CM, Compton WM, Mustaquim D. Patterns and characteristics of methamphetamine use among adults—United States, 2015–2018. MMWR Morb Wkly Rep. 2020;69:317–323.
  • Gummin DD, Mowry JB, Beuhler MC, et al. 2019 Annual report of the American association of Poison Control Centers’ National Poison Data System (NPDS): 37th annual report. Clin Toxicol (Phila). 2020;58(12):1360–1541.
  • National Institute on Drug Abuse. Overdose death rates; 2021. Available from: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
  • O'Connor AD, Padilla-Jones A, Gerkin RD, et al. Prevalence of rhabdomyolysis in sympathomimetic toxicity: a comparison of stimulants. J Med Toxicol. 2015;11(2):195–200.
  • Winslow BT, Voorhees KI, Pehl KA. Methamphetamine abuse. Am Fam Physician. 2007;76(8):1169–1174.
  • Matsumoto RR, Seminerio MJ, Turner RC, et al. Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther. 2014;144(1):28–40.
  • Makisumi T, Yoshida K, Watanabe T, et al. Sympatho-adrenal involvement in methamphetamine-induced hyperthermia through skeletal muscle hypermetabolism. Eur J Pharmacol. 1998;363(2–3):107–112.
  • Sprague JE, Mallett NM, Rusyniak DE, et al. UCP3 and thyroid hormone involvement in methamphetamine-induced hyperthermia. Biochem Pharmacol. 2004;68(7):1339–1343.
  • Aburahma A, Pachhain S, Choudhury SR, et al. Potential contribution of the intestinal microbiome to phenethylamine-induced hyperthermia. Brain Behav Evol. 2020;95(5):256–271.
  • Ridge EA, Pachhain S, Choudhury SR, et al. The influence of the host microbiome on 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperthermia and vice versa. Sci Rep. 2019;9(1):4313.
  • Angoa-Pérez M, Zagorac B, Winters AD, et al. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLOS One. 2020;15(1):e0227774.
  • Goldsmith R, Aburahma A, Pachhain S, et al. Reversal of temperature responses to methylone mediated through bi-directional fecal microbiota transplantation between hyperthermic tolerant and naïve rats. Temperature. 2022;9(4):318–330.
  • Wyeth RP, Mills EM, Ullman A, et al. The hyperthermia mediated by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is sensitive to sex differences. Toxicol Appl Pharmacol. 2009;235(1):33–38.
  • Nelson KH, Manke HN, Imanalieva A, et al. Sex differences in α-pyrrolidinopentiophenone (α-PVP)-induced taste avoidance, place preference, hyperthermia and locomotor activity in rats. Pharmacol Biochem Behav. 2019;185:172762.
  • Goldsmith R, Pachhain S, Choudhury SR, et al. Gender differences in tolerance to the hyperthermia mediated by the synthetic cathinone methylone. Temperature. 2019;6(4):334–340.
  • Kim YS, Unno T, Kim B-Y, et al. Sex differences in gut microbiota. World J Mens Health. 2020;38(1):48–60.
  • Org E, Mehrabian M, Parks BW, et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes. 2016;7(4):313–322.
  • Dafters RI. Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Behav. 1995;58(5):877–882.
  • Suskind DL, Brittnacher MJ, Wahbeh G, et al. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm Bowel Dis. 2015;21(3):556–563.
  • Staley C, Kaiser T, Beura LK, et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome. 2017;5(1):87.
  • Holmes C, Eisenhofer G, Goldstein DS. Improved assay for plasma dihydroxyphenylacetic acid and other catechols using high-performance liquid chromatography with electrochemical detection. J Chrom. 1994;653(2):131–138.
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583.
  • Wang Q, Garrity GM, Tiedje JM, et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267.
  • Oksanen J, Blanchet FG, Friendly M, et al. Vegan: Community ecology package. R package version 2.5-7; 2020. Available from: https://CRAN.R-project.org/package=vegan
  • Fonsart J, Menet M-C, Declèves X, et al. Sprague–Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Toxicol Appl Pharmacol. 2008;230(1):117–125.
  • Colado MI, Williams JL, Green AR. The hyperthermic and neurotoxic effects of “ecstasy” (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the dark agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype. Br J Pharmacol. 1995;115(7):1281–1289.
  • Fukumura M, Cappon GD, Broening HW, et al. Methamphetamine-Induced dopamine and serotonin reductions in neostriatum are not gender specific in rats with comparable hyperthermic responses. Neurotoxicol Teratol. 1998;20(4):441–448.
  • Lin LY, Stefano EWD, Schmitz DA, et al. Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos. 1997;25(9):1059–1064.
  • Milesi-Hallé A, Hendrickson HP, Laurenzana EM, et al. Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats. Toxicol Appl Pharmacol. 2005;209(3):203–213.
  • Rambousek L, Kacer P, Syslova K, et al. Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend. 2014;139:138–144.
  • Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Phil. Trans. R. Soc. B. 2016;371(1688):20150122.
  • Yurkovetskiy L, Burrows M, Khan AA, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–412.
  • de la Cuesta-Zuluaga J, Kelley ST, Chen Y, et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems. 2019;4(4):e00261-19.
  • Francesco V, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol. 2021;61:100912.
  • Lundberg R, Toft MF, August B, et al. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes. 2016;7(1):68–74.
  • Mocanu V, Rajaruban S, Dang J, et al. Repeated fecal microbial transplantations and antibiotic pre-treatment are linked to improved clinical response and remission in inflammatory bowel disease: a systematic review and pooled proportion meta-analysis. JCM. 2021;10(5):959.
  • Hu X-F, Zhang W-Y, Wen Q, et al. Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacol Res. 2019;139:412–421.
  • Manichanh C, Reeder J, Gibert P, et al. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res. 2010;20(10):1411–1419.
  • Wei S, Bahl MI, Baunwall SMD, et al. Gut microbiota differs between treatment outcomes early after fecal microbiota transplantation against recurrent Clostridioides difficile infection. Gut Microbes. 2022;14(1):2084306.
  • Kellermayer R, Nagy-Szakal D, Harris RA, et al. Serial fecal microbiota transplantation alters mucosal gene expression in pediatric ulcerative colitis. Am J Gastroenterol. 2015;110(4):604–606.
  • Yang Y, Yu X, Liu X, et al. Altered fecal microbiota composition in individuals who abuse methamphetamine. Sci Rep. 2021;11(1):18178.
  • Song M, Yuan F, Li X, et al. Analysis of sex differences in dietary copper-fructose interaction-induced alterations of gut microbial activity in relation to hepatic steatosis. Biol Sex Differ. 2021;12(1):3.
  • Kovacs A, Ben-Jacob N, Tayem H, et al. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol. 2011;61(2):423–428.
  • Markle JGM, Frank DN, Mortin-Toth S, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–1088.
  • Nusbaum DJ, Sun F, Ren J, et al. Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients. FEMS Microbiol Ecol. 2018;94(9):fiy133.
  • Staley C, Kelly CR, Brandt LJ, et al. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. mBio. 2016;7(6):e01965-16.
  • Staley C, Kaiser T, Vaughn BP, et al. Durable long-term bacterial engraftment following encapsulated fecal microbiota transplantation to treat Clostridium difficile infection. mBio. 2019;10(4):e01586-19.
  • Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol. 2016;13(9):508–516.
  • Bojanova DP, Bordenstein SR. Fecal transplants: what is being transferred? PLoS Biol. 2016;14(7):e1002503.
  • Haifer C, Paramsothy S, Borody TJ, et al. Long-Term bacterial and fungal dynamics following oral lyophilized fecal microbiota transplantation in Clostridioides difficile infection. mSystems. 2021;6(1):e00905–e00920.