837
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How far the zone of heat-induced transient block extends beyond the lesion during RF catheter cardiac ablation

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2163310 | Received 01 Nov 2022, Accepted 22 Dec 2022, Published online: 02 Jan 2023

References

  • Viglianti BL, Dewhirst MW, Abraham JP, et al. Rationalization of thermal injury quantification methods: application to skin burns. Burns. 2014;40(5):896–902.
  • Haines DE. Letter by Haines regarding article, “direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.” Circ Arrhythm Electrophysiol. 2011;4(5):e67; author reply e68.
  • González-Suárez A, Pérez JJ, Irastorza RM, et al. Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. Comput Methods Programs Biomed. 2022;214:106546.
  • Nath S, Lynch C 3rd, Whayne JG, et al. Cellular electrophysiological effects of hyperthermia on isolated Guinea pig papillary muscle. Implications for catheter ablation. Circulation. 1993;88(4 Pt 1):1826–1831.
  • Simmers TA, De Bakker JM, Wittkampf FH, et al. Effects of heating on impulse propagation in superfused canine myocardium. J Am Coll Cardiol. 1995;25(6):1457–1464.
  • Simmers TA, de Bakker JM, Wittkampf FH, et al. Effects of heating with radiofrequency power on myocardial impulse conduction: is radiofrequency ablation exclusively thermally mediated? J Cardiovasc Electrophysiol. 1996;7(3):243–247.
  • Pérez JJ, D’Angelo R, González-Suárez A, et al. Low-energy (360 J) radiofrequency catheter ablation using moderate power - short duration: proof of concept based on in silico modeling. J Interv Card Electrophysiol. 2022. Epub ahead of print. DOI:10.1007/s10840-022-01292-z
  • Irastorza RM, d‘Avila A, Berjano E. Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: results of a computer-modeling study. J Cardiovasc Electrophysiol. 2018;29(2):322–327.
  • Pearce JA. Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia. 2013;29(4):262–280.
  • Pérez JJ, Nadal E, Berjano E, et al. Computer modeling of radiofrequency cardiac ablation including heartbeat-induced electrode displacement. Comput Biol Med. 2022;144:105346.
  • Masnok K, Watanabe N. Catheter contact area strongly correlates with lesion area in radiofrequency cardiac ablation: an ex vivo porcine heart study. J Interv Card Electrophysiol. 2022;63(3):561–572.
  • Kotadia ID, Williams SE, O'Neill M. High-power, short-duration radiofrequency ablation for the treatment of AF. Arrhythm Electrophysiol Rev. 2020;8(4):265–272.
  • Barbhaiya CR, Kogan EV, Jankelson L, et al. Esophageal temperature dynamics during high-power short-duration posterior wall ablation. Heart Rhythm. 2020;17(5 Pt A):721–727.
  • Irastorza RM, Gonzalez-Suarez A, Pérez JJ, et al. Differences in applied electrical power between full thorax models and limited-domain models for RF cardiac ablation. Int J Hyperthermia. 2020;37(1):677–687.
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS database for thermal and electromagnetic parameters of biological tissues, Version 4.1. 2022. DOI:10.13099/VIP21000-04-1
  • Pérez JJ, Ewertowska E, Berjano E. Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: relation between pullback speed and impedance progress. Lasers Surg Med. 2020;52(9):897–906.
  • González-Suárez A, Pérez JJ, Berjano E. Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes? Biomed Eng Online. 2018;17(1):43.
  • Nakagawa H, Ikeda A, Sharma T, et al. Comparison of In vivo tissue temperature profile and lesion geometry for radiofrequency ablation with high power-short duration and moderate power-moderate duration: effects of thermal latency and contact force on lesion formation. Circ Arrhythm Electrophysiol. 2021;14(7):e009899.
  • Simmers TA, de Bakker JM, Coronel R, et al. Effects of intracavitary blood flow and electrode-target distance on radiofrequency power required for transient conduction block in a Langendorff-perfused canine model. J Am Coll Cardiol. 1998;31(1):231–235.
  • Demazumder D, Mirotznik MS, Schwartzman D. Comparison of irrigated electrode designs for radiofrequency ablation of myocardium. J Interv Card Electrophysiol. 2001;5(4):391–400.
  • Demazumder D, Mirotznik MS, Schwartzman D. Biophysics of radiofrequency ablation using an irrigated electrode. J Interv Card Electrophysiol. 2001;5(4):377–389.
  • Wong WS, VanderBrink BA, Riley RE, et al. Effect of saline irrigation flow rate on temperature profile during cooled radiofrequency ablation. J Interv Card Electrophysiol. 2000;4(1):321–326.
  • Cote JM, Epstein MR, Triedman JK, et al. Low-temperature mapping predicts site of successful ablation while minimizing myocardial damage. Circulation. 1996;94(3):253–257.
  • Nath S, Whayne JG, Kaul S, et al. Effects of radiofrequency catheter ablation on regional myocardial blood flow. Possible mechanism for late electrophysiological outcome. Circulation. 1994;89(6):2667–2672.
  • Sánchez-Muñoz EJ, Berjano E, González-Suárez A. Computer simulations of consecutive radiofrequency pulses applied at the same point during cardiac catheter ablation: implications for lesion size and risk of overheating. Comput Methods Programs Biomed. 2022;220:106817.