1,913
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Semi-automatic artifact quantification in thermal ablation probe and algorithms for the evaluation of metal artifact reduction

, , , , , , , , & show all
Article: 2205071 | Received 13 Oct 2022, Accepted 15 Apr 2023, Published online: 01 May 2023

References

  • Ahmed M, R. Technology Assessment Committee of the Society of Interventional. Image-guided tumor ablation: standardization of terminology and reporting criteria – a 10-year update: supplement to the consensus document. J Vasc Interv Radiol. 2014;25(11):1706–1708.
  • Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation–what should you use and why? Radiographics. 2014;34(5):1344–1362.
  • Vogl TJ, Farshid P, Naguib NNN, et al. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies. Radiol Med. 2014;119(7):451–461.
  • Vogl TJ, Dommermuth A, Heinle B, et al. Colorectal cancer liver metastases: long-term survival and progression-free survival after thermal ablation using magnetic resonance-guided laser-induced interstitial thermotherapy in 594 patients: analysis of prognostic factors. Invest Radiol. 2014;49(1):48–56.
  • Yin X-Y, Xie X-Y, Lu M-D, et al. Percutaneous thermal ablation of medium and large hepatocellular carcinoma: long-term outcome and prognostic factors. Cancer. 2009;115(9):1914–1923.
  • Carnevale A, Pellegrino F, Cossu A, et al. Current concepts in ablative procedures for primary benign liver lesions: a step forward to minimize the invasiveness of treatment when deemed necessary. Med Oncol. 2020;37(4):31.
  • Cheng Z, Liang P, Yu X, et al. Percutaneous microwave ablation for benign focal liver lesions: initial clinical results. Oncol Lett. 2017;13(1):429–434.
  • Wang X, Sofocleous CT, Erinjeri JP, et al. Margin size is an independent predictor of local tumor progression after ablation of Colon cancer liver metastases. Cardiovasc Intervent Radiol. 2013;36(1):166–175.
  • Shady W, Petre EN, Vakiani E, et al. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget. 2017;8(39):66117–66127.
  • Stattaus J, Kuehl H, Ladd S, et al. CT-guided biopsy of small liver lesions: visibility, artifacts, and corresponding diagnostic accuracy. Cardiovasc Intervent Radiol. 2007;30(5):928–935.
  • McWilliams SR, Murphy KP, Golestaneh S, et al. Reduction of guide needle streak artifact in CT-guided biopsy. J Vasc Interv Radiol. 2014;25(12):1929–1935.
  • Kotsenas AL, Michalak GJ, DeLone DR, et al. CT metal artifact reduction in the spine: can an iterative reconstruction technique improve visualization? AJNR Am J Neuroradiol. 2015;36(11):2184–2190.
  • Morsbach F, Bickelhaupt S, Wanner GA, et al. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology. 2013;268(1):237–244.
  • Morsbach F, Wurnig M, Kunz DM, et al. Metal artefact reduction from dental hardware in carotid CT angiography using iterative reconstructions. Eur Radiol. 2013;23(10):2687–2694.
  • Bier G, Bongers MN, Hempel J-M, et al. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling-improved image quality by iterative metal artifact reduction. Neuroradiology. 2017;59(7):649–654.
  • Do TD, Heim J, Skornitzke S, et al. Single-energy versus dual-energy imaging during CT-guided biopsy using dedicated metal artifact reduction algorithm in an in vivo pig model. PLoS One. 2021;16(4):e0249921.
  • Wolf I, Vetter M, Wegner I, et al. The medical imaging interaction toolkit. Med Image Anal. 2005;9(6):594–604.
  • Do TD, Sommer CM, Melzig C, et al. A novel method for segmentation-based semiautomatic quantitative evaluation of metal artifact reduction algorithms. Invest Radiol. 2019;54(6):365–373.
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. biometrics. 1977;33(1):159–174.
  • Vogl TJ, Farshid P, Naguib NNN, et al. Ablation therapy of hepatocellular carcinoma: a comparative study between radiofrequency and microwave ablation. Abdom Imaging. 2015;40(6):1829–1837.
  • Do TD, Heim J, Melzig C, et al. Virtual monochromatic spectral imaging versus linearly blended dual-energy and single-energy imaging during CT-guided biopsy needle positioning: optimization of keV settings and impact on image quality. PLoS One. 2020;15(2):e0228578.
  • Wang Y, Qian B, Li B, et al. Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol. 2013;82(8):e360-6–e366.
  • Do TD, et al. The value of iterative metal artifact reduction algorithms during antenna positioning for CT-guided microwave ablation. Int J Hyperthermia. 2019;36(1):1223–1232.
  • Wright AS, Sampson LA, Warner TF, et al. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236(1):132–139.
  • Nattenmüller J, Hosch W, Nguyen T-T, et al. Hypodense liver lesions in patients with hepatic steatosis: do we profit from dual-energy computed tomography? Eur Radiol. 2015;25(12):3567–3576.