481
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of a new self-regulating temperature magnetic material Fe83Zr10B7 in magnetic induction hyperthermia

ORCID Icon, , , , , , & show all
Article: 2211269 | Received 28 Jul 2022, Accepted 02 May 2023, Published online: 20 Jul 2023

References

  • Beik J, Abed Z, Ghoreishi FS, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release. 2016;235:205–221.
  • Elming P, Sørensen B, Oei A, et al. Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia. Cancers. 2019;11(1):60.
  • Peiravi M, Eslami H, Ansari M, et al. Magnetic hyperthermia: potentials and limitations. J Indian Chem Soc. 2022;99(1):100269.
  • Sánchez OS, Castelo-Grande T, Augusto PA, et al. Cubic nanoparticles for magnetic hyperthermia: process optimization and potential industrial implementation. Nanomaterials. 2021;11(7):1652.
  • Lebrun A, Zhu L. Magnetic nanoparticle hyperthermia in cancer treatment: history, mechanism, Imaging-Assisted protocol design, and challenges. John Wiley & Sons, Ltd; 2018. p. 631–667. DOI:10.1002/9781119127420.ch29
  • Ganguly S, Margel S. Design of magnetic hydrogels for hyperthermia and drug delivery. Polymers. 2021;13(23):4259.
  • Oei AL, Kok HP, Oei SB, et al. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev. 2020;163–164:84–97.
  • Dobšíček Trefná H, Schmidt M, van Rhoon GC, et al. Quality assurance guidelines for interstitial hyperthermia. Int J Hyperthermia. 2019;36(1):277–294.
  • Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33–56.
  • Mw D, Bl V, M L M, et al. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Inter J Hyperthermia. 2003;19(3):267–294.
  • Sedighi O, Alaghmandfard A, Montazerian M, et al. A critical review of bioceramics for magnetic hyperthermia. J Am Ceram Soc. 2022;105(3):1723–1747.
  • Kazantseva NE, Smolkova IS, Babayan V, et al. Magnetic nanomaterials for arterial embolization and hyperthermia of parenchymal organs tumors: a review. Nanomaterials. 2021;11(12):3402.
  • Fatima H, Charinpanitkul T, Kim KS. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials. 2021;11(5):1203.
  • Gupta R, Sharma D. (Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment. Colloids Surf B Biointerfaces. 2021;205:111870.
  • Kobayashi T, Kida Y. Interstitial hyperthermia of malignant brain tumors by an implant heating system using stereotactic techniques. Stereotact Funct Neurosurg. 1992;59(1-4):123–127.
  • Kobayashi T, Kida Y, Tanaka T, et al. Interstitial hyperthermia of malignant brain tumors by implant heating system: clinical experience. J Neurooncol. 1991;10(2):153–163.
  • Akiyama S, Kawasaki S, Kodera Y, et al. A new method of thermo-chemotherapy using a stent for patients with esophageal cancer. Surg Today. 2006;36(1):19–24.
  • Stea B, Kittelson J, Cassady JR, et al. Treatment of malignant gliomas with interstitial irradiation and hyperthermia. Int J Radiat Oncol Biol Phys. 1992;24(4):657–667.
  • Mack CF, Stea B, Kittelson JM, et al. Interstitial thermoradiotherapy with ferromagnetic implants for locally advanced and recurrent neoplasms. Int J Radiat Oncol Biol Phys. 1993;27(1):109–115.
  • Deger S, Taymoorian K, Boehmer D, et al. Thermoradiotherapy using interstitial self-regulating thermoseeds: an intermediate analysis of a phase II trial. Eur Urol. 2004;45(5):574–579; discussion 580.
  • Deger S, Boehmer D, Turk I, et al. Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol. 2002;42(2):147–153.
  • Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia. 2005;21(7):637–647.
  • Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53–60.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541.
  • Raouf I, Khalid S, Khan A, et al. A review on numerical modeling for magnetic nanoparticle hyperthermia: progress and challenges. J Therm Biol. 2020;91:102644.
  • Tang Y D, Flesch R, Jin T, et al. Computational evaluation of malignant tissue apoptosis in magnetic hyperthermia considering intratumoral injection strategy. Int J Heat Mass Transf. 2021;178:121609.
  • Kawashita M, Domi S, Saito Y, et al. In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field. J Mater Sci Mater Med. 2008;19(5):1897–1903.
  • Ji P, Wang Y, Zhang M, et al. P2O5-Fe2O3-CaO-SiO2 ferromagnetic glass-ceramics for hyperthermia. Int J Appl Ceram Technol. 2018;15(5):1261–1267.
  • Wu J, Wang H, Zhang X, et al. Power absorption of milliscaled implants in alternating magnetic field for magnetically induced hyperthermia: institute of electrical and electronics engineers inc[C]. Datong: institute of Electrical and Electronics Engineers Inc.; 2016.
  • Astefanoaei I, Dumitru I, Stancu A, et al. A thermo-fluid analysis in magnetic hyperthermia. Chinese Phys B. 2014;23(4):044401.
  • Schwarz RB, Johnson WL. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys Rev Lett. 1983;51(5):415–418.
  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues.3. PARAMETRIC models for the dielectric spectrum of tissues. Phys Med Biol. 1996;41(11):2271–2293.
  • Hasgall PA, Neufeld E, Gosselin MC, et al. ITIS database for thermal and electromagnetic parameters of biological tissues, version 2.2. ITIS Database. 2011.
  • Wu Y. Design and optimization of electromagnetic induction devices by finite element analysis [D]. South China University of Technology, 2021. DOI:10.27151/d.cnki.ghnlu.2021.002803
  • Arulmurugan R, Vaidyanathan G, Sendhilnathan S, et al. Co-Zn ferrite nanoparticles for ferrofluid preparation: study on magnetic properties. Physica B Condensed Matter. 2005;363(1-4):225–231.
  • Zhang W, Zuo XD, Niu Y, et al. Novel nanoparticles with Cr3+ substituted ferrite for self-regulating temperature hyperthermia. Nanoscale. 2017;9(37):13929–13937.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm (reprinted from journal of applied physiology, vol 1, pg 93-122, 1948). J Appl Physiol (1985). 1998;85(1):5–34.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng. 1984;31(1):70–75.
  • Stauffer PR, Cetas TC, Fletcher AM, et al. Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng. 1984;BME-31(1):76–90.
  • Mao N, Song MJ, Pan DM, et al. Computational fluid dynamics analysis of convective heat transfer coefficients for a sleeping human body. Appl Therm Eng. 2017;117:385–396.
  • Hergt R, Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311(1):187–192.
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.
  • van Rhoon GC, Samaras T, Yarmolenko PS, et al. CEM43 °C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?. Eur Radiol. 2013;23(8):2215–2227.
  • Yarmolenko PS, Moon E J, Landon C, et al. Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia. 2011;27(4):320–343.