600
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predictions of optimal heating by magnetic reversal behavior of magnetic nanowires (MNWs) with different materials

ORCID Icon & ORCID Icon
Article: 2223371 | Received 08 Feb 2023, Accepted 05 Jun 2023, Published online: 25 Jun 2023

References

  • Fert A, Piraux L. Magnetic nanowires. J Magn Magn Mater. 1999;200(1-3):338–358.
  • Piraux L, George JM, Despres JF, et al. Giant magnetoresistance in magnetic multilayered nanowires. Appl Phys Lett. 1994;65(19):2484–2486.
  • Blondel A, Meier JP, Doudin B, et al. Giant magnetoresistance of nanowires of multilayers. Appl Phys Lett. 1994;65(23):3019–3021.
  • Parkin SS, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320(5873):190–194.
  • Shore D, Pailloux SL, Zhang J, et al. Electrodeposited Fe and Fe–Au nanowires as MRI contrast agents. Chem Commun. 2016;52(85):12634–12637.
  • Zamani Kouhpanji MR, Ghoreyshi A, Visscher PB, et al. Facile decoding of quantitative signatures from magnetic nanowire arrays. Sci Rep. 2020;10(1):1–9.
  • Jeon YS, Shin HM, Kim YJ, et al. Metallic Fe–Au barcode nanowires as a simultaneous T cell capturing and cytokine sensing platform for immunoassay at the single-cell level. ACS Appl Mater Interfaces. 2019;11(27):23901–23908.
  • Choi DS, Park J, Kim S, et al. Hyperthermia with magnetic nanowires for inactivating living cells. J Nanosci Nanotechnol. 2008;8(5):2323–2327.
  • Alonso J, Khurshid H, Sankar V, et al. FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia. J Appl Phys. 2015;117(17):17D113.
  • Egolf PW, Shamsudhin N, Pané S, et al. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction. J Appl Phys. 2016;120(6):064304.
  • Gao Z, Namsrai B, Han Z, et al. Vitrification and rewarming of magnetic nanoparticle‐loaded rat hearts. Adv Mat Technol. 2022;7(3):2100873.
  • Lin WS, Lin HM, Chen HH, et al. Shape effects of iron nanowires on hyperthermia treatment. J Nanomater. 2013;2013:1–6.
  • Chen XZ, Hoop M, Mushtaq F, et al. Recent developments in magnetically driven micro-and nanorobots. Appl Mater Today. 2017;9:37–48.
  • Sharma A, Rao JS, Han Z, et al. Vitrification and nanowarming of kidneys. Adv Sci. 2021;8(19):2101691.
  • Lavorato GC, Das R, Masa JA, et al. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. Nanoscale Adv. 2021;3(4):867–888.
  • Di Corato R, Espinosa A, Lartigue L, et al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 2014;35(24):6400–6411.
  • Geng S, Yang H, Ren X, et al. Anisotropic magnetite nanorods for enhanced magnetic hyperthermia. Chemistry–An. Chem Asian J. 2016;11(21):2996–3000.
  • Martín-Saavedra FM, Ruíz-Hernández E, Boré A, et al. Magnetic mesoporous silica spheres for hyperthermia therapy. Acta Biomater. 2010;6(12):4522–4531.
  • Serantes D, Baldomir D, Pereiro M, et al. Magnetic ordering in arrays of one-dimensional nanoparticle chains. J Phys D: Appl Phys. 2009;42(21):215003.
  • Serantes D, Vega V, Rosa WD, et al. Interplay between magnetic anisotropy and dipolar interaction in one-dimensional nanomagnets: optimized magnetocaloric effect. Phys Rev B. 2012;86(10):104431.
  • Serantes D, Simeonidis K, Angelakeris M, et al. Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C. 2014;118(11):5927–5934.
  • Das R, Alonso J, Nemati Porshokouh Z, et al. Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J Phys Chem C. 2016;120(18):10086–10093.
  • Shore D, Ghemes A, Dragos-Pinzaru O, et al. Nanowarming using Au-tipped Co 35 Fe 65 ferromagnetic nanowires. Nanoscale. 2019;11(31):14607–14615.
  • Sharma A, Orlowski GM, Zhu Y, et al. Inducing cells to disperse nickel nanowires via integrin-mediated responses. Nanotechnology. 2015;26(13):135102.
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys. 2011;109(8):083921.
  • Hubert A, Schäfer R. Domain theory. In: Magnetic domains. Berlin (Heidelberg): Springer; 1998. p. 99–335.
  • Aharoni A, Arrott A. Introduction to the theory of ferromagnetism. Phys Today. 1997;50(9):66–68.
  • Cullity BD, Graham CD. Introduction to magnetic materials. Hoboken (NJ): Wiley; 2008. Chapter 9, p. 275–333.
  • Sampaio J, Cros V, Rohart S, et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat Nanotechnol. 2013;8(11):839–844.
  • Woo S, Litzius K, Krüger B, et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat Mater. 2016;15(5):501–506.
  • Wartelle A, Trapp B, Staňo M, et al. Bloch-point-mediated topological transformations of magnetic domain walls in cylindrical nanowires. Phys Rev B. 2019;99(2):024433.
  • Pignard S, Goglio G, Radulescu A, et al. Study of the magnetization reversal in individual nickel nanowires. J Appl Phys. 2000;87(2):824–829.
  • Mohammed H, Moreno JA, Kosel J. Advanced fabrication and characterization of magnetic nanowires. Magnetism Magnetic Mat. 2017;2:137–164.
  • Donahue MJ, Porter DG. OOMMF user’s guide version 1.0. National Institute of Standards and Technology; 1999. (Interagency Report NISTIR 6376).
  • Beg M, Pepper RA, Fangohr H. User interfaces for computational science: a domain specific language for OOMMF embedded in python. AIP Adv. 2017;7(5):056025.
  • Ivanov YP, Fesenko OC. Micromagnetic simulations of cylindrical magnetic nanowires. In: Magnetic Nano, and Microwires, Woodhead Publishing Series in Electronic and Optical Materials. Elsevier; 2015. p. 423–448.
  • Sun L, Hao Y, Chien CL, et al. Tuning the properties of magnetic nanowires. IBM J Res & Dev. 2005;49(1):79–102.
  • Huang J, Guo J, Zhou L, et al. Advanced nanomaterials-assisted cell cryopreservation: a mini review. ACS Appl Bio Mater. 2021;4(4):2996–3014.
  • Huysmans GT, Lodder JC, Wakui J. Magnetization curling in perpendicular iron particle arrays (alumite media). J Appl Phys. 1988;64(4):2016–2021.
  • Madhukar Reddy S, Jin Park J, Maqableh MM, et al. Magnetization reversal mechanisms in 35-nm diameter Fe1-x Ga x/Cu multilayered nanowires. J Appl Phys. 2012;111(7):07A920.
  • Fernandez-Roldan JA, Serantes D, del Real RP, et al. Micromagnetic evaluation of the dissipated heat in cylindrical magnetic nanowires. Appl Phys Lett. 2018;112(21):212402.
  • Rodrigo I, Castellanos-Rubio I, Garaio E, et al. Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization. Int J Hyperthermia. 2020;37(1):976–991.
  • Zeinoun M, Serrano D, Medina PT, et al. Configurable high-frequency alternating magnetic field generator for nanomedical magnetic hyperthermia applications. IEEE Access. 2021;9:105805–105816.
  • Nana AB, Marimuthu T, Kondiah PP, et al. Multifunctional magnetic nanowires: design, fabrication, and future prospects as cancer therapeutics. Cancers. 2019;11(12):1956.
  • Jeon S, Oberreit DR, Van Schooneveld G, et al. Ion-mobility-based quantification of surface-coating-dependent binding of serum albumin to superparamagnetic iron oxide nanoparticles. ACS Appl Mater Interfaces. 2016;8(37):24482–24490.
  • Gao Z, Ring HL, Sharma A, et al. Preparation of scalable silica‐coated iron oxide nanoparticles for nanowarming. Adv Sci. 2020;7(4):1901624.
  • Pasek-Allen JL, Wilharm RK, Gao Z, et al. Phosphonate coating of commercial iron oxide nanoparticles for nanowarming cryopreserved samples. J Mater Chem B. 2022;10(19):3734–3746.
  • Chiu-Lam A, Staples E, Pepine CJ, et al. Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci Adv. 2021;7(2):eabe3005.
  • Manuchehrabadi N, Gao Z, Zhang J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med. 2017;9(379):eaah4586.
  • Eisenberg DP, Steif PS, Rabin Y. On the effects of thermal history on the development and relaxation of thermo-mechanical stress in cryopreservation. Cryogenics. 2014;64:86–94.