879
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mild magnetic hyperthermia is synergistic with an antibiotic treatment against dual species biofilms consisting of S. aureus and P. aeruginosa by enhancing metabolic activity

, , , &
Article: 2226845 | Received 20 Apr 2023, Accepted 13 Jun 2023, Published online: 27 Jun 2023

References

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322. doi: 10.1126/science.284.5418.1318.
  • James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44. doi: 10.1111/j.1524-475X.2007.00321.x.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193. doi: 10.1128/CMR.15.2.167-193.2002.
  • Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677–701. doi: 10.1146/annurev.micro.57.030502.090720.
  • Dowd SE, Wolcott RD, Sun Y, et al. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded flx amplicon pyrosequencing (btefap). PLoS One. 2008;3(10):e3326. doi: 10.1371/journal.pone.0003326.
  • Tipton CD, Mathew ME, Wolcott RA, et al. Temporal dynamics of relative abundances and bacterial succession in chronic wound communities. Wound Repair Regen. 2017;25(4):673–679. doi: 10.1111/wrr.12555.
  • Omar A, Wright JB, Schultz G, et al. Microbial biofilms and chronic wounds. Microorganisms. 2017;5(1):9. doi: 10.3390/microorganisms5010009.
  • Kim MH, Yamayoshi I, Mathew S, et al. Magnetic nanoparticle targeted hyperthermia of cutaneous staphylococcus aureus infection. Ann Biomed Eng. 2013;41(3):598–609. doi: 10.1007/s10439-012-0698-x.
  • Alumutairi L, Yu B, Filka M, et al. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of staphylococcus aureus biofilm to antibiotics. Int J Hyperthermia. 2020;37(1):66–75. doi: 10.1080/02656736.2019.1707886.
  • Ricker EB, Nuxoll E. Synergistic effects of heat and antibiotics on pseudomonas aeruginosa biofilms. Biofouling. 2017;33(10):855–866. doi: 10.1080/08927014.2017.1381688.
  • Sturtevant RA, Sharma P, Pavlovsky L, et al. Thermal augmentation of vancomycin against staphylococcal biofilms. Shock. 2015;44(2):121–127. doi: 10.1097/SHK.0000000000000369.
  • Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: an overview of the evidence. Adv Wound Care (New Rochelle). 2015;4(7):373–381. doi: 10.1089/wound.2014.0557.
  • Buch PJ, Chai Y, Goluch ED. Treating polymicrobial infections in chronic diabetic wounds. Clin Microbiol Rev. 2019;32(2):e00091–18. doi: 10.1128/CMR.00091-18.
  • Gjodsbol K, Christensen JJ, Karlsmark T, et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–231. doi: 10.1111/j.1742-481X.2006.00159.x.
  • Puca V, Marulli RZ, Grande R, et al. Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics (Basel). 2021;10(10):1162. doi: 10.3390/antibiotics10101162.
  • Schaumburg F, Vas Nunes J, Monnink G, et al. Chronic wounds in Sierra Leone: pathogen spectrum and antimicrobial susceptibility. Infection. 2022;50(4):907–914. doi: 10.1007/s15010-022-01762-6.
  • Hou J, Wang L, Alm M, et al. Enhanced antibiotic tolerance of an in vitro multispecies uropathogen biofilm model, useful for studies of catheter-associated urinary tract infections. Microorganisms. 2022;10(6):1207. doi: 10.3390/microorganisms10061207.
  • O'Brien TJ, Figueroa W, Welch M. Decreased efficacy of antimicrobial agents in a polymicrobial environment. Isme J. 2022;16(7):1694–1704. doi: 10.1038/s41396-022-01218-7.
  • Nabb DL, Song S, Kluthe KE, et al. Polymicrobial interactions induce multidrug tolerance in staphylococcus aureus through energy depletion. Front Microbiol. 2019;10:2803. doi: 10.3389/fmicb.2019.02803.
  • Macdonald KE, Boeckh S, Stacey HJ, et al. The microbiology of diabetic foot infections: a meta-analysis. BMC Infect Dis. 2021;21(1):770. doi: 10.1186/s12879-021-06516-7.
  • Trizna EY, Yarullina MN, Baidamshina DR, et al. Bidirectional alterations in antibiotics susceptibility in staphylococcus aureus-pseudomonas aeruginosa dual-species biofilm. Sci Rep. 2020;10(1):14849. doi: 10.1038/s41598-020-71834-w.
  • Woods PW, Haynes ZM, Mina EG, et al. Maintenance of s. Aureus in co-culture with p. Aeruginosa while growing as biofilms. Front Microbiol. 2018;9:3291. doi: 10.3389/fmicb.2018.03291.
  • Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749–1755. doi: 10.1086/647952.
  • van Rhoon GC, Samaras T, Yarmolenko PS, et al. Cem43 degrees c thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol. 2013;23(8):2215–2227. doi: 10.1007/s00330-013-2825-y.
  • Kong C, Chee CF, Richter K, et al. Suppression of staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, um-c162. Sci Rep. 2018;8(1):2758. doi: 10.1038/s41598-018-21141-2.
  • Seth AK, Geringer MR, Hong SJ, et al. Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS One. 2012;7(8):e42897. doi: 10.1371/journal.pone.0042897.
  • Fleury B, Kelley WL, Lew D, et al. Transcriptomic and metabolic responses of staphylococcus aureus exposed to supra-physiological temperatures. BMC Microbiol. 2009;9:76. doi: 10.1186/1471-2180-9-76.
  • Tomlinson BR, Malof ME, Shaw LN. A global transcriptomic analysis of staphylococcus aureus biofilm formation across diverse clonal lineages. Microb Genom. 2021;7:000598.
  • Bertrand BP, Heim CE, West SC, et al. Role of staphylococcus aureus formate metabolism during prosthetic joint infection. Infect Immun. 2022;90(11):e0042822. doi: 10.1128/iai.00428-22.
  • Kenny JG, Ward D, Josefsson E, et al. The staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One. 2009;4(2):e4344. doi: 10.1371/journal.pone.0004344.
  • Han SO, Inui M, Yukawa H. Transcription of corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle. J Mol Microbiol Biotechnol. 2008;15(4):264–276. doi: 10.1159/000117614.
  • Stokes JM, Lopatkin AJ, Lobritz MA, et al. Bacterial metabolism and antibiotic efficacy. Cell Metab. 2019;30(2):251–259. doi: 10.1016/j.cmet.2019.06.009.
  • Martinez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):768–789. doi: 10.1111/j.1574-6976.2011.00282.x.
  • Walters MC 3rd, Roe F, Bugnicourt A, et al. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–323. doi: 10.1128/AAC.47.1.317-323.2003.
  • Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, et al. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol. 2009;82(4):773–783. doi: 10.1007/s00253-009-1879-x.
  • Dalecki AG, Crawford CL, Wolschendorf F. Targeting biofilm associated staphylococcus aureus using resazurin based drug-susceptibility assay. J Vis Exp. 2016;
  • Masadeh MM, Alzoubi KH, Ahmed WS, et al. In vitro comparison of antibacterial and antibiofilm activities of selected fluoroquinolones against pseudomonas aeruginosa and methicillin-resistant staphylococcus aureus. Pathogens. 2019;8(1):12. doi: 10.3390/pathogens8010012.
  • Zhao G, Hochwalt PC, Usui ML, et al. Delayed wound healing in diabetic (db/db) mice with pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen. 2010;18(5):467–477. doi: 10.1111/j.1524-475X.2010.00608.x.
  • Mastropaolo MD, Evans NP, Byrnes MK, et al. Synergy in polymicrobial infections in a mouse model of type 2 diabetes. Infect Immun. 2005;73(9):6055–6063. doi: 10.1128/IAI.73.9.6055-6063.2005.
  • Kok M, Maton L, van der Peet M, et al. Unraveling antimicrobial resistance using metabolomics. Drug Discov Today. 2022;27(6):1774–1783. doi: 10.1016/j.drudis.2022.03.015.
  • Gazel D, Demirbakan H, Erinmez M. In vitro activity of hyperthermia on swarming motility and antimicrobial susceptibility profiles of proteus mirabilis isolates. Int J Hyperthermia. 2021;38(1):1002–1012. doi: 10.1080/02656736.2021.1943546.
  • Su YB, Peng B, Li H, et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc Natl Acad Sci U S A. 2018;115: E1578–E1587.
  • Meylan S, Porter CBM, Yang JH, et al. Carbon sources tune antibiotic susceptibility in pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24(2):195–206. doi: 10.1016/j.chembiol.2016.12.015.
  • Gaupp R, Lei S, Reed JM, et al. Staphylococcus aureus metabolic adaptations during the transition from a daptomycin susceptibility phenotype to a daptomycin nonsusceptibility phenotype. Antimicrob Agents Chemother. 2015;59(7):4226–4238. doi: 10.1128/AAC.00160-15.