2,317
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Magic bubbles: utilizing histotripsy to modulate the tumor microenvironment and improve systemic anti-tumor immune responses

, , , , , & show all
Article: 2244206 | Received 15 May 2023, Accepted 29 Jul 2023, Published online: 14 Aug 2023

References

  • Joiner JB, Kren NP, Durham PG, et al. Low-Intensity focused ultrasound produces immune response in pancreatic cancer. Ultrasound Med Biol. 2022;48(11):2344–2353. doi: 10.1016/j.ultrasmedbio.2022.06.017.
  • Mungur R, Zheng J, Wang B, et al. Low-intensity focused ultrasound technique in glioblastoma multiforme treatment. Front Oncol. 2022;12:903059. doi: 10.3389/fonc.2022.903059.
  • Schibber E, Mittelstein D, Gharib M, et al. A dynamical model of oncotripsy by mechanical cell fatigue: selective cancer cell ablation by low-intensity pulsed ultrasound. Proc R Soc A. 2020;476(2236):20190692.
  • Kwan JJ, Myers R, Coviello CM, et al. Ultrasound‐propelled nanocups for drug delivery. Small. 2015;11(39):5305–5314. doi: 10.1002/smll.201501322.
  • Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood–brain barrier with focused ultrasound. J Control Release. 2015;219:61–75. doi: 10.1016/j.jconrel.2015.08.059.
  • Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics. 2019;9(9):2572–2594. doi: 10.7150/thno.32424.
  • Mess G, Anderson T, Kapoor S, et al. Sonodynamic therapy for the treatment of glioblastoma multiforme in a mouse model using a portable benchtop focused ultrasound system. JoVE. 2023;(192):e65114. doi: 10.3791/65114.
  • Wallace G, 4th, Haar CP, Vandergrift WA, et al. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neurooncol. 2013;114(1):43–50. doi: 10.1007/s11060-013-1165-8.
  • Edsall C, Khan ZM, Mancia L, et al. Bubble cloud behavior and ablation capacity for histotripsy generated from intrinsic or artificial cavitation nuclei. Ultrasound Med Biol. 2021;47(3):620–639. doi: 10.1016/j.ultrasmedbio.2020.10.020.
  • Sadeghi-Goughari M, Jeon S, Kwon H-J. Enhancing thermal effect of focused ultrasound therapy using gold nanoparticles. IEEE Trans Nanobiosci. 2019;18(4):661–668. doi: 10.1109/TNB.2019.2937327.
  • Vlaisavljevich E, Durmaz YY, Maxwell A, et al. Nanodroplet-mediated histotripsy for image-guided targeted ultrasound cell ablation. Theranostics. 2013;3(11):851–864. doi: 10.7150/thno.6717.
  • Khokhlova TD, Hwang JH. HIFU for palliative treatment of pancreatic cancer. In: Escoffre JM, Bouakaz A, editors. Therapeutic ultrasound. Advances in experimental medicine and biology. Vol. 880. Cham: Springer; 2016.
  • ter Haar G, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia. 2007;23(2):89–104. doi: 10.1080/02656730601186138.
  • Chang I, Hwang KJ, Choi HJ, et al. HIFU: effects and clinical effectiveness of non-surgical therapy for uterine fibroids. J Menopausal Med. 2016;22(2):59–61. doi: 10.6118/jmm.2016.22.2.59.
  • Ji Y, Hu K, Zhang Y, et al. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis. Arch Gynecol Obstet. 2017;296(6):1181–1188. doi: 10.1007/s00404-017-4548-9.
  • Lessick J, Abadi S, Agmon Y, et al. Multidetector computed tomography predictors of late ventricular remodeling and function after acute myocardial infarction. Eur J Radiol. 2012;81(10):2648–2657. doi: 10.1016/j.ejrad.2011.12.016.
  • Ruhnke H, Eckey T, Bohlmann MK, MR-guided HIFU treatment of symptomatic uterine fibroids using novel feedback-regulated volumetric ablation: effectiveness and clinical practice. In: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; 2013;185(10)983–991. © Georg Thieme Verlag KG, New York.
  • Zibari GB, Riche A, Zizzi HC, et al. Surgical and nonsurgical management of primary and metastatic liver tumors. Am Surg. 1998;64(3):211.
  • McGhana JP, Dodd GD. Radiofrequency ablation of malignant liver tumours. AJR Am J Roentgenol. 2001;176(1):3–16. doi: 10.2214/ajr.176.1.1760003.
  • Fukuda H, Ito R, Ohto M, et al. Treatment of small hepatocellular carcinomas with US-guided high-intensity focused ultrasound. Ultrasound Med Biol. 2011;37(8):1222–1229. doi: 10.1016/j.ultrasmedbio.2011.04.020.
  • Gervais DA, McGovern FJ, Arellano RS, et al. Radiofrequency ablation of renal cell carcinoma: part 1, indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185(1):64–71. doi: 10.2214/ajr.185.1.01850064.
  • McClure TD, Chow DS, Tan N, et al. Intermediate outcomes and predictors of efficacy in the radiofrequency ablation of 100 pathologically proven renal cell carcinomas. J Vasc Interv Radiol. 2014;25(11):1682–1688; quiz 1689. doi: 10.1016/j.jvir.2014.06.013.
  • Vlaisavljevich E, Kim Y, Allen S, et al. Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol. 2013;39(8):1398–1409. doi: 10.1016/j.ultrasmedbio.2013.02.005.
  • Vlaisavljevich E, Maxwell A, Mancia L, et al. Visualizing the histotripsy process: bubble cloud–cancer cell interactions in a tissue-mimicking environment. Ultrasound Med Biol. 2016;42(10):2466–2477. doi: 10.1016/j.ultrasmedbio.2016.05.018.
  • Bader KB, Vlaisavljevich E, Maxwell AD. For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. Ultrasound Med Biol. 2019;45(5):1056–1080. doi: 10.1016/j.ultrasmedbio.2018.10.035.
  • Xu Z, Hall TL, Vlaisavljevich E, et al. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561–575. doi: 10.1080/02656736.2021.1905189.
  • Hall TL, Hempel CR, Wojno K, et al. Histotripsy of the prostate: dose effects in a chronic canine model. Urology. 2009;74(4):932–937. doi: 10.1016/j.urology.2009.03.049.
  • Xu Z, Hall TL, Fowlkes JB, et al. Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion. J Acoust Soc Am. 2007;121(4):2421–2430. doi: 10.1121/1.2710079.
  • Lake A, Xu Z, Wilkinson J, et al. Renal ablation by histotripsy—does it spare the collecting system? J Urol. 2008;179(3):1150–1154. doi: 10.1016/j.juro.2007.10.033.
  • Xu Z, Raghavan M, Hall TL, et al. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54(10):2091–2101. doi: 10.1109/tuffc.2007.504.
  • Maxwell AD, Owens G, Gurm HS, et al. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model. J Vasc Interv Radiol. 2011;22(3):369–377. doi: 10.1016/j.jvir.2010.10.007.
  • Vlaisavljevich E, Kim Y, Owens G, et al. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol. 2013;59(2):253–270. doi: 10.1088/0031-9155/59/2/253.
  • Vlaisavljevich E, Owens G, Lundt J, et al. Non-invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model. Ultrasound Med Biol. 2017;43(6):1237–1251. doi: 10.1016/j.ultrasmedbio.2017.01.016.
  • Allen SP, Roberts WW, Hall TL, Cain CA, Hernandez-Garcia L, editors. Characterization of the in vivo histotripsy lesion using high field MRIProceedings, International Society for Magnetic Resonance in Medicine 20th Annual Meeting and Exhibition; 2012.
  • Allen SP, Hall TL, Cain CA, et al. Controlling cavitation‐based image contrast in focused ultrasound histotripsy surgery. Magn Reson Med. 2015;73(1):204–213. doi: 10.1002/mrm.25115.
  • Wang T-Y, Hall TL, Xu Z, et al. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(6):1167–1181. doi: 10.1109/tuffc.2012.2307.
  • Wang T-Y, Xu Z, Winterroth F, et al. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy-histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(5):995–1005. doi: 10.1109/tuffc.2009.1131.
  • Macoskey JJ, Zhang X, Hall TL, et al. Bubble-induced color doppler feedback correlates with histotripsy-induced destruction of structural components in liver tissue. Ultrasound Med Biol. 2018;44(3):602–612. doi: 10.1016/j.ultrasmedbio.2017.11.012.
  • Mancia L, Rodriguez M, Sukovich J, et al. Single–bubble dynamics in histotripsy and high–amplitude ultrasound: modeling and validation. Phys Med Biol. 2020;65(22):225014. doi: 10.1088/1361-6560/abb02b.
  • Styn N, Hall TL, Fowlkes JB, et al. Histotripsy homogenization of the prostate: thresholds for cavitation damage of periprostatic structures. J Endourol. 2011;25(9):1531–1535. doi: 10.1089/end.2010.0648.
  • Arnold L, Hendricks-Wenger A, Coutermarsh-Ott S, et al. Histotripsy ablation of bone tumors: feasibility study in excised canine osteosarcoma tumors. Ultrasound Med Biol. 2021;47(12):3435–3446. doi: 10.1016/j.ultrasmedbio.2021.08.004.
  • Vlaisavljevich E, Maxwell A, Warnez M, et al. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):341–352. doi: 10.1109/TUFFC.2014.6722618.
  • Roberts WW, Teofilovic D, Jahnke RC, et al. Histotripsy of the prostate using a commercial system in a canine model. J Urol. 2014;191(3):860–865. doi: 10.1016/j.juro.2013.08.077.
  • Smolock AR, Cristescu MM, Vlaisavljevich E, et al. Robotically assisted sonic therapy as a noninvasive nonthermal ablation modality: proof of concept in a porcine liver model. Radiology. 2018;287(2):485–493. doi: 10.1148/radiol.2018171544.
  • Vlaisavljevich E, Greve J, Cheng X, et al. Non-invasive ultrasound liver ablation using histotripsy: chronic study in an in vivo rodent model. Ultrasound Med Biol. 2016;42(8):1890–1902. doi: 10.1016/j.ultrasmedbio.2016.03.018.
  • Funaki K, Fukunishi H, Sawada K. Clinical outcomes of magnetic resonance‐guided focused ultrasound surgery for uterine myomas: 24‐month follow‐up. Ultrasound Obstet Gynecol. 2009;34(5):584–589. doi: 10.1002/uog.7455.
  • Tamura N, Kurabayashi T, Nagata H, et al. Effects of testosterone on cancellous bone, marrow adipocytes, and ovarian phenotype in a young female rat model of polycystic ovary syndrome. Fertil Steril. 2005;84 Suppl 2:1277–1284. doi: 10.1016/j.fertnstert.2005.06.017.
  • Maxwell AD, Wang T-Y, Cain CA, et al. Cavitation clouds created by shock scattering from bubbles during histotripsy. J Acoust Soc Am. 2011;130(4):1888–1898. doi: 10.1121/1.3625239.
  • Maxwell AD, Yuldashev PV, Kreider W, et al. A prototype therapy system for transcutaneous application of boiling histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(10):1542–1557. doi: 10.1109/TUFFC.2017.2739649.
  • Wang Y-N, Khokhlova T, Bailey M, et al. Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound. Ultrasound Med Biol. 2013;39(3):424–438. doi: 10.1016/j.ultrasmedbio.2012.10.012.
  • Lin K-W, Kim Y, Maxwell AD, et al. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):251–265. doi: 10.1109/TUFFC.2014.6722611.
  • Vidal-Jove J, Serres X, Vlaisavljevich E, et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperthermia. 2022;39(1):1115–1123. doi: 10.1080/02656736.2022.2112309.
  • Vidal-Jové J, Serres-Créixams X, Ziemlewicz TJ, et al. Liver histotripsy mediated abscopal effect—case report. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):3001–3005. doi: 10.1109/TUFFC.2021.3100267.
  • Duan Q, Zhang H, Zheng J, et al. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6(7):605–618. doi: 10.1016/j.trecan.2020.02.022.
  • Sumimoto H, Imabayashi F, Iwata T, et al. The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–1656. doi: 10.1084/jem.20051848.
  • Pylayeva-Gupta Y, Lee KE, Hajdu CH, et al. Oncogenic kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 2012;21(6):836–847. doi: 10.1016/j.ccr.2012.04.024.
  • Broz ML, Binnewies M, Boldajipour B, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26(5):638–652. doi: 10.1016/j.ccell.2014.09.007.
  • Boland PM, Ma WW. Immunotherapy for colorectal cancer. Cancers. 2017;9(5):50. doi: 10.3390/cancers9050050.
  • Hendricks-Wenger A, Sereno J, Gannon J, et al. Histotripsy ablation alters the tumor microenvironment and promotes immune system activation in a subcutaneous model of pancreatic cancer. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2987–3000. doi: 10.1109/TUFFC.2021.3078094.
  • Qu S, Worlikar T, Felsted AE, et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunol Ther Cancer. 2020;8(1). doi: 10.1136/jitc-2019-000200.
  • Kindlund B, Sjöling Å, Yakkala C, et al. CD4+ regulatory T cells in gastric cancer mucosa are proliferating and express high levels of IL-10 but little TGF-β. Gastric Cancer. 2017;20(1):116–125. doi: 10.1007/s10120-015-0591-z.
  • Levings MK, Bacchetta R, Schulz U, et al. The role of IL-10 and TGF-β in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol. 2002;129(4):263–276. doi: 10.1159/000067596.
  • Kalathil S, Lugade AA, Miller A, et al. Higher frequencies of GARP + CTLA-4+ Foxp3+ T regulatory cells and Myeloid-Derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-Cell FunctionalityHigh frequency of GARP + tregs and MDSC in HCC patients. Cancer Res. 2013;73(8):2435–2444. doi: 10.1158/0008-5472.CAN-12-3381.
  • O'Dea LSL, MacDougall J, Alexander VJ, et al. Differentiating familial chylomicronemia syndrome from multifactorial severe hypertriglyceridemia by clinical profiles. J Endocr Soc. 2019;3(12):2397–2410. doi: 10.1210/js.2019-00214.
  • Yu X, Zhu L, Wang T, et al. Immune microenvironment of cholangiocarcinoma: biological concepts and treatment strategies. Front Immunol. 2023;14:1037945. doi: 10.3389/fimmu.2023.1037945.
  • Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018;18(4):e27. doi: 10.4110/in.2018.18.e27.
  • Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes: a novel group of damage‐associated molecular pattern molecules. J Leukoc Biol. 2007;81(1):28–37. doi: 10.1189/jlb.0306170.
  • Amarante-Mendes GP, Adjemian S, Branco LM, et al. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379. doi: 10.3389/fimmu.2018.02379.
  • McCall KD, Muccioli M, Benencia F. Toll-like receptors signaling in the tumor microenvironment. In: Birbrair A, editor. Tumor microenvironment. Advances in experimental medicine and biology. Vol. 1223. Cham: Springer; 2020. p. 81–97.
  • Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–518. doi: 10.1038/nature07725.
  • Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140(6):798–804. doi: 10.1016/j.cell.2010.02.015.
  • Kate S, Jurg T. The inflammasomes. Cell. 2010;140(6):821–832.
  • Tattoli I, Carneiro LA, Jehanno M, et al. NLRX1 is a mitochondrial NOD‐like receptor that amplifies NF‐κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 2008;9(3):293–300. doi: 10.1038/sj.embor.7401161.
  • Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018;9:832. doi: 10.3389/fimmu.2018.00832.
  • Nam GH, Pahk KJ, Jeon S, et al. Investigation of the potential immunological effects of boiling histotripsy for cancer treatment. Adv Therap. 2020;3(8):1900214. doi: 10.1002/adtp.201900214.
  • Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, et al. Immunological effects of histotripsy for cancer therapy. Front Oncol. 2021;11:681629. doi: 10.3389/fonc.2021.681629.
  • Schade GR, Wang Y-N, D'Andrea S, et al. Boiling histotripsy ablation of renal cell carcinoma in the eker rat promotes a systemic inflammatory response. Ultrasound Med Biol. 2019;45(1):137–147. doi: 10.1016/j.ultrasmedbio.2018.09.006.
  • Brock RM, Beitel-White N, Davalos RV, et al. Starting a fire without flame: the induction of cell death and inflammation in electroporation-based tumor ablation strategies. Front Oncol. 2020;10:1235. doi: 10.3389/fonc.2020.01235.
  • Ringel-Scaia VM, Beitel-White N, Lorenzo MF, et al. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine. 2019;44:112–125. doi: 10.1016/j.ebiom.2019.05.036.
  • Weinlich R, Green DR. The two faces of receptor interacting protein kinase-1. Mol Cell. 2014;56(4):469–480. doi: 10.1016/j.molcel.2014.11.001.
  • Alinezhadbalalami N, Graybill PM, Imran KM, et al. Generation of tumor-activated T cells using electroporation. Bioelectrochemistry. 2021;142:107886. doi: 10.1016/j.bioelechem.2021.107886.
  • Shao Q, O'Flanagan S, Lam T, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia. 2019;36(1):130–138. doi: 10.1080/02656736.2018.1539253.
  • Hendricks-Wenger A, Arnold L, Gannon J, et al. Histotripsy ablation in preclinical animal models of cancer and spontaneous tumors in veterinary patients: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(1):5–26. doi: 10.1109/TUFFC.2021.3110083.
  • Hendricks-Wenger A, Nagai-Singer MA, Uh K, et al. Employing novel porcine models of subcutaneous pancreatic cancer to evaluate oncological therapies. In: Rasooly A, Baker H, Ossandon MR, editors. Biomedical engineering technologies. Methods in molecular biology. Vol. 2394. New York (NY): Humana; 2022. p. 883–895.
  • Huang X, Yuan F, Liang M, et al. M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer. PLoS One. 2012;7(7):e41632. doi: 10.1371/journal.pone.0041632.
  • Xing Y, Lu X, Pua EC, et al. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem Biophys Res Commun. 2008;375(4):645–650. doi: 10.1016/j.bbrc.2008.08.072.
  • Qian J, Wang C, Wang B, et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflamm. 2018;15(1):290. doi: 10.1186/s12974-018-1330-2.
  • Pahk KJ, Shin C-H, Bae IY, et al. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. Sci Rep. 2019;9(1):9050. doi: 10.1038/s41598-019-45542-z.
  • Singh MP, Sethuraman SN, Miller C, et al. Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. Theranostics. 2021;11(2):540–554. doi: 10.7150/thno.49517.
  • Pepple AL, Guy JL, McGinnis R, et al. Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation. Front Immunol. 2023;14:1012799. doi: 10.3389/fimmu.2023.1012799.
  • Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270–274. doi: 10.1038/s41586-019-1170-y.
  • Worlikar T, Zhang M, Ganguly A, et al. Impact of histotripsy on development of intrahepatic metastases in a rodent liver tumor model. Cancers. 2022;14(7):1612. doi: 10.3390/cancers14071612.
  • Hu Z, Yang XY, Liu Y, et al. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem Biophys Res Commun. 2005;335(1):124–131. doi: 10.1016/j.bbrc.2005.07.071.
  • Hu Z, Yang XY, Liu Y, et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med. 2007;5(1):34. doi: 10.1186/1479-5876-5-34.
  • Zhang Y, Deng J, Feng J, et al. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound. World J Gastroenterol. 2010;16(28):3584–3591. doi: 10.3748/wjg.v16.i28.3584.
  • Chavez M, Silvestrini MT, Ingham ES, et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics. 2018;8(13):3611–3628. doi: 10.7150/thno.25613.
  • Eranki A, Srinivasan P, Ries M, et al. High-Intensity focused ultrasound (HIFU) triggers immune sensitization of refractory murine neuroblastoma to checkpoint inhibitor TherapyHIFU with immunotherapy cure refractory murine neuroblastoma. Clin Cancer Res. 2020;26(5):1152–1161. doi: 10.1158/1078-0432.CCR-19-1604.
  • Fite BZ, Wang J, Kare AJ, et al. Immune modulation resulting from MR-guided high intensity focused ultrasound in a model of murine breast cancer. Sci Rep. 2021;11(1):927. doi: 10.1038/s41598-020-80135-1.
  • van den Bijgaart RJ, Mekers VE, Schuurmans F, et al. Mechanical high-intensity focused ultrasound creates unique tumor debris enhancing dendritic cell-induced T cell activation. Front Immunol. 2022;13:1038347. doi: 10.3389/fimmu.2022.1038347.
  • Abe S, Nagata H, Crosby EJ, et al. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity. J ImmunoTher Cancer. 2022;10(1). doi: 10.1136/jitc-2021-003717.
  • Mouratidis PX, Costa M, Rivens I, et al. Pulsed focused ultrasound can improve the anti-cancer effects of immune checkpoint inhibitors in murine pancreatic cancer. J R Soc Interface. 2021;18(180):20210266. doi: 10.1098/rsif.2021.0266.