1,611
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound-guided noninvasive pancreas ablation using histotripsy: feasibility study in an in vivo porcine model

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2247187 | Received 24 May 2023, Accepted 07 Aug 2023, Published online: 29 Aug 2023

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590.
  • Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet. 2020;395(10242):2008–2020. doi: 10.1016/S0140-6736(20)30974-0.
  • Chiorean EG, Coveler AL. Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther. 2015;9:3529–3545. doi: 10.2147/DDDT.S60328.
  • Artinyan A, Soriano PA, Prendergast C, et al. The anatomic location of pancreatic cancer is a prognostic factor for survival. HPB. 2008;10(5):371–376. doi: 10.1080/13651820802291233.
  • Paiella S, Malleo G, Cataldo I, et al. Radiofrequency ablation for locally advanced pancreatic cancer: SMAD4 analysis segregates a responsive subgroup of patients. Langenbecks Arch Surg. 2018;403(2):213–220. doi: 10.1007/s00423-017-1627-0.
  • Ge H-Y, Miao L-Y, Xiong L-L, et al. High-intensity focused ultrasound treatment of late-stage pancreatic body carcinoma: optimal tumor depth for safe ablation. Ultrasound Med Biol. 2014;40(5):947–955. doi: 10.1016/j.ultrasmedbio.2013.11.020.
  • Keisari Y. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation. Front Biosci. 2017;22(2):310–347. doi: 10.2741/4487.
  • Sofuni A, Moriyasu F, Sano T, et al. Safety trial of high-intensity focused ultrasound therapy for pancreatic cancer. World J Gastroenterol. 2014;20(28):9570–9577. doi: 10.3748/wjg.v20.i28.9570.
  • Sugimoto K, Moriyasu F, Tsuchiya T, et al. Irreversible electroporation for nonthermal tumor ablation in patients with locally advanced pancreatic cancer: initial clinical experience in Japan. Intern Med. 2018;57(22):3225–3231. doi: 10.2169/internalmedicine.0861-18.
  • Ierardi AM, et al. Percutaneous ablation therapies of inoperable pancreatic cancer: a systematic review. Ann Gastroenterol. 2015;28(4):431–439.
  • D'Onofrio M, Ciaravino V, De Robertis R, et al. Percutaneous ablation of pancreatic cancer. World J Gastroenterol. 2016;22(44):9661–9673. doi: 10.3748/wjg.v22.i44.9661.
  • Vidal-Jove J, Perich E, Del Castillo MA. Ultrasound guided high intensity focused ultrasound for malignant tumors: the spanish experience of survival advantage in stage III and IV pancreatic cancer. Ultrason Sonochem. 2015;27:703–706. doi: 10.1016/j.ultsonch.2015.05.026.
  • Mouratidis PXE, Ter Haar G. Latest advances in the use of therapeutic focused ultrasound in the treatment of pancreatic cancer. Cancers. 2022;14(3, p):638. doi: 10.3390/cancers14030638.
  • Timmer FEF, Geboers B, Ruarus AH, et al. Irreversible electroporation for locally advanced pancreatic cancer. Tech Vasc Interv Radiol. 2020;23(2):100675. // doi: 10.1016/j.tvir.2020.100675.
  • Linecker M, Pfammatter T, Kambakamba P, et al. Ablation strategies for locally advanced pancreatic cancer. Dig Surg. 2016;33(4):351–359. doi: 10.1159/000445021.
  • Vlaisavljevich E, Maxwell A, Mancia L, et al. Visualizing the histotripsy process: bubble Cloud-Cancer cell interactions in a tissue-mimicking environment. Ultrasound Med Biol. 2016;42(10):2466–2477. doi: 10.1016/j.ultrasmedbio.2016.05.018.
  • Xu Z, Ludomirsky A, Eun LY, et al. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(6):726–736. doi: 10.1109/tuffc.2004.1308731.
  • Xu Z, Raghavan M, Hall TL, et al. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(5):1122–1132. doi: 10.1109/TUFFC.2008.764.
  • Vlaisavljevich E, Lin K-W, Warnez MT, et al. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. Phys Med Biol. 2015;60(6):2271–2292. doi: 10.1088/0031-9155/60/6/2271.
  • Mancia L, Vlaisavljevich E, Xu Z, et al. Predicting tissue susceptibility to mechanical cavitation damage in therapeutic ultrasound. Ultrasound Med Biol. 2017;43(7):1421–1440. doi: 10.1016/j.ultrasmedbio.2017.02.020.
  • Vlaisavljevich E, Owens G, Lundt J, et al. Non-Invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model. Ultrasound Med Biol. 2017;43(6):1237–1251. doi: 10.1016/j.ultrasmedbio.2017.01.016.
  • Kim Y, Vlaisavljevich E, Owens GE, et al. In vivo transcostal histotripsy therapy without aberration correction. Phys Med Biol. 2014;59(11):2553–2568. doi: 10.1088/0031-9155/59/11/2553.
  • Vlaisavljevich E, Kim Y, Owens G, et al. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol. 2014;59(2):253–270. doi: 10.1088/0031-9155/59/2/253.
  • Lake AM, Xu Z, Wilkinson JE, et al. Renal ablation by histotripsy–does it spare the collecting system? J Urol. 2008;179(3):1150–1154. doi: 10.1016/j.juro.2007.10.033.
  • Vlaisavljevich E, Kim Y, Allen S, et al. Image-Guided Non-Invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol. 2013;39(8):1398–1409. doi: 10.1016/j.ultrasmedbio.2013.02.005.
  • Mancia L, Vlaisavljevich E, Yousefi N, et al. Modeling tissue-selective cavitation damage. Phys Med Biol. 2019;64(22):225001. doi: 10.1088/1361-6560/ab5010.
  • Smolock AR, Cristescu MM, Vlaisavljevich E, et al. Robotically assisted sonic therapy as a noninvasive nonthermal ablation modality: proof of concept in a porcine liver model. Radiology. 2018;287(2):485–493. doi: 10.1148/radiol.2018171544.
  • Wang TY, Hall TL, Xu Z, et al. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2012;59(6):1167–1181. doi: 10.1109/TUFFC.2012.2307.
  • Lundt JE, Allen SP, Shi J, et al. Non-invasive, rapid ablation of tissue volume using histotripsy. Ultrasound Med Biol. 2017;43(12):2834–2847. doi: 10.1016/j.ultrasmedbio.2017.08.006.
  • Xu Z, Hall TL, Vlaisavljevich E, et al. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561–575. doi: 10.1080/02656736.2021.1905189.
  • Vidal-Jove J, Serres X, Vlaisavljevich E, et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperthermia. 2022;39(1):1115–1123. doi: 10.1080/02656736.2022.2112309.
  • Sebeke LC, Rademann P, Maul AC, et al. Feasibility study of MR-guided pancreas ablation using high-intensity focused ultrasound in a healthy swine model. Int J Hyperthermia. 2020;37(1):786–798. doi: 10.1080/02656736.2020.1782999.
  • Ge H-Y, Miao L-Y, Wang J-R, et al. Correlation between ultrasound reflection intensity and tumor ablation ratio of late-stage pancreatic carcinoma in HIFU therapy: dynamic observation on ultrasound reflection intensity. ScientificWorldJournal. 2013;2013:852874. doi: 10.1155/2013/852874.
  • Hendricks-Wenger A, Arnold L, Gannon J, et al. Histotripsy ablation in preclinical animal models of cancer and spontaneous tumors in veterinary patients: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(1):5–26. doi: 10.1109/tuffc.2021.3110083.
  • Vlaisavljevich E, Lin K-W, Maxwell A, et al. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. Ultrasound Med Biol. 2015;41(6):1651–1667. doi: 10.1016/j.ultrasmedbio.2015.01.028.
  • Lin K-W, Kim Y, Maxwell AD, et al. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):251–265. doi: 10.1109/TUFFC.2014.6722611.
  • Parsons JE, Cain CA, Abrams GD, et al. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol. 2006;32(1):115–129. doi: 10.1016/j.ultrasmedbio.2005.09.005.
  • Parsons JE, Cain CA, Fowlkes JB. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields. J Acoust Soc Am. 2006;119(3):1432–1440. doi: 10.1121/1.2166708.
  • Vlaisavljevich E, Gerhardson T, Hall T, et al. Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. Phys Med Biol. 2017;62(4):1269–1290. doi: 10.1088/1361-6560/aa54c7.
  • Holmes HR, Haywood M, Hutchison R, et al. Focused ultrasound extraction (FUSE) for the rapid extraction of DNA from tissue matrices. Methods Ecol. Evol. 2020;11(12):1599–1608. doi: 10.1111/2041-210X.13505.
  • Khirallah J, Schmieley R, Demirel E, et al. Nanoparticle-mediated histotripsy (NMH) using perfluorohexane 'nanocones. Phys Med Biol. 2019;64(12):125018. doi: 10.1088/1361-6560/ab207e.
  • Vidal Jove J, et al. Phase I study of safety and efficacy of hepatic histotripsy. Preliminary results of first in man experience with Robotically-Assisted sonic therapy. Proceedings of the International Society of Therapeutic Ultrasound. Barcelona, Spain, 2019. p. 167.
  • Yeats E, Gupta D, Xu Z, et al. Effects of phase aberration on transabdominal focusing for a large aperture, low f-number histotripsy transducer. Phys Me. Biol. 2022;67(15):155004. doi: 10.1088/1361-6560/ac7d90.
  • Park JS, Jeong S, Kim JM, et al. Development of an acute pancreatitis porcine model based on endoscopic retrograde infusion of contrast medium or sodium taurocholate, (in eng. Korean J Intern Med. 2019;34(6):1244–1251. doi: 10.3904/kjim.2017.367.
  • Basnayake C, Ratnam D. Blood tests for acute pancreatitis, (in eng. Aust Prescr. 2015;38(4):128–130. doi: 10.18773/austprescr.2015.043.
  • Abdul Jabar A, Abbas I, Mishah N, et al. Effect of adding a capsule with activated charcoal to abdominal ultrasound preparation on image quality. J Ultrason. 2020;20(80):e12–e17. doi: 10.15557/jou.2020.0003.
  • Wagner MG, Periyasamy S, Kutlu AZ, et al. An X-ray C-arm guided automatic targeting system for histotripsy. IEEE Trans. Biomed. Eng. 2023;70(2):592–602. doi: 10.1109/TBME.2022.3198600.
  • Mauri G, Cova L, De Beni S, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases, (in eng. Cardiovasc Intervent Radiol. 2015;38(1):143–151. doi: 10.1007/s00270-014-0897-y.
  • Sukovich JR, Macoskey JJ, Lundt JE, et al. Real-time transcranial histotripsy treatment localization and mapping using acoustic cavitation emission feedback. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(6):1178–1191. doi: 10.1109/TUFFC.2020.2967586.
  • Ruarus A, Vroomen L, Puijk R, et al. Locally advanced pancreatic cancer: a review of local ablative therapies. Cancers. 2018; 10(1):16. doi: 10.3390/cancers10010016.
  • Granata V, Grassi R, Fusco R, et al. Assessment of ablation therapy in pancreatic cancer: the radiologist’s challenge. Front Oncol. 2020;10:560952. doi: 10.3389/fonc.2020.560952.
  • Ke L, Tong Z-h, Ni H-B, et al. The effect of intra-abdominal hypertension incorporating severe acute pancreatitis in a porcine model. PLoS One. 2012;7(3):e33125. doi: 10.1371/journal.pone.0033125.
  • Otto J, Afify M, Jautz U, et al. Histomorphologic and ultrastructural lesions of the pancreas in a porcine model of intra-abdominal hypertension. Shock. 2010;33(6):639–645. doi: 10.1097/SHK.0b013e3181cb8be0.
  • Marchetti P, Finke EH, Gerasimidi-Vazeou A, et al. Automated large-scale isolation, in vitro function and xenotransplantation of porcine islets of langerhans. Transplantation. 1991;52(2):209–213. doi: 10.1097/00007890-199108000-00005.
  • Bower M, Sherwood L, Li Y, et al. Irreversible electroporation of the pancreas: definitive local therapy without systemic effects. J Surg Oncol. 2011;104(1):22–28. doi: 10.1002/jso.21899.
  • Nahm CB, Connor SJ, Samra JS, et al. Postoperative pancreatic fistula: a review of traditional and emerging concepts. Clin Exp Gastroenterol. 2018;11:105–118. doi: 10.2147/CEG.S120217.
  • Bassi C, Marchegiani G, Dervenis C, et al. The 2016 update of the international study group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after, (in eng. Surgery. 2017;161(3):584–591. doi: 10.1016/j.surg.2016.11.014.
  • Simon A, Robinson F, Anzivino A, et al. Histotripsy for the treatment of uterine leiomyomas: a feasibility study in ex vivo uterine fibroids, (in eng. Ultrasound Med Biol. 2022;48(8):1652–1662. doi: 10.1016/j.ultrasmedbio.2022.04.214.
  • Hendricks-Wenger A, Weber P, Simon A, et al. Histotripsy for the treatment of cholangiocarcinoma liver tumors: in vivo feasibility and ex vivo dosimetry study. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2953–2964. doi: 10.1109/TUFFC.2021.3073563.
  • Khokhlova VA, Rosnitskiy PB, Tsysar SA, et al. Initial assessment of boiling histotripsy for mechanical ablation of ex vivo human prostate tissue. Ultrasound Med Biol. 2023;49(1):62–71. doi: 10.1016/j.ultrasmedbio.2022.07.014.
  • Hendricks-Wenger A, Aycock KN, Nagai-Singer MA, et al. Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporation. Sci Rep. 2021;11(1):7584. doi: 10.1038/s41598-021-87228-5.