705
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational modeling of microwave ablation with thermal accelerants

ORCID Icon, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Article: 2255755 | Received 30 Mar 2023, Accepted 31 Aug 2023, Published online: 14 Sep 2023

References

  • Ahmed M, Brace CL, Lee FT, et al. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–369. doi:10.1148/radiol.10081634.
  • Gillams A, Goldberg N, Ahmed M, et al. Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, the interventional oncology sans frontières meeting 2013. Eur Radiol. 2015;25(12):3438–3454. doi:10.1007/s00330-015-3779-z.
  • Seror O. Ablative therapies: advantages and disadvantages of radiofrequency, cryotherapy, microwave and electroporation methods, or how to choose the right method for an individual patient? Diagn Interv Imaging. 2015;96(6):617–624. doi:10.1016/j.diii.2015.04.007.
  • Wells SA, Hinshaw JL, Lubner MG, et al. Liver ablation: best practice. Radiol Clin North Am. 2015;53(5):933–971. doi:10.1016/j.rcl.2015.05.012.
  • Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update. Radiology. 2014;273(1):241–260. doi:10.1148/radiol.14132958.
  • Haroon M, Sathiadoss P, Hibbert RM, et al. Imaging considerations for thermal and radiotherapy ablation of primary and metastatic renal cell carcinoma. Abdom Radiol (NY). 2021;46(11):5386–5407. doi:10.1007/s00261-021-03178-6.
  • Nabavizadeh N, Jahangiri Y, Rahmani R, et al. Thermal ablation versus stereotactic body radiotherapy after transarterial chemoembolization for inoperable hepatocellular carcinoma: a propensity Score-Weighted analysis. AJR Am J Roentgenol. 2021;217(3):691–698. doi:10.2214/AJR.20.24117.
  • Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208. doi:10.1038/nrc3672.
  • Liu Y, Li S, Wan X, et al. Efficacy and safety of thermal ablation in patients with liver metastases. Eur J Gastroenterol Hepatol. 2013;25(4):442–446. doi:10.1097/MEG.0b013e32835cb566.
  • Lubner MG, Brace CL, Hinshaw JL, et al. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S192–S203. doi:10.1016/j.jvir.2010.04.007.
  • Andreano A, Brace CL. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver. Cardiovasc Intervent Radiol. 2013;36(2):505–511. doi:10.1007/s00270-012-0405-1.
  • Di Vece F, Tombesi P, Ermili F, et al. Coagulation areas produced by cool-tip radiofrequency ablation and microwave ablation using a device to decrease back-heating effects: a prospective pilot study. Cardiovasc Intervent Radiol. 2014;37:723–729.
  • Hoffmann R, Rempp H, Erhard L, et al. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology. 2013;268(1):89–97. doi:10.1148/radiol.13121127.
  • Livraghi T, Meloni F, Solbiati L, et al. Complications of microwave ablation for liver tumors: results of a multicenter study. Cardiovasc Intervent Radiol. 2012;35(4):868–874. doi:10.1007/s00270-011-0241-8.
  • Poggi G, Montagna B, DI Cesare P, et al. Microwave ablation of hepatocellular carcinoma using a new percutaneous device: preliminary results. Anticancer Res. 2013;33:1221–1227.
  • Horn JC, Patel RS, Kim E, et al. Percutaneous microwave ablation of renal tumors using a gas-cooled 2.4-GHz probe: technique and initial results. J Vasc Interv Radiol. 2014;25(3):448–453. doi:10.1016/j.jvir.2013.10.029.
  • Ziemlewicz TJ, Hinshaw JL, Lubner MG, et al. Percutaneous microwave ablation of hepatocellular carcinoma with a gas-cooled system: initial clinical results with 107 tumors. J Vasc Interv Radiol. 2015;26(1):62–68. doi:10.1016/j.jvir.2014.09.012.
  • Ryan TP, Brace CL. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance. Int J Hyperthermia. 2017;33(1):3–14. doi:10.1080/02656736.2016.1214884.
  • Pfannenstiel A, Iannuccilli J, Cornelis FH, et al. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. Int J Hyperthermia. 2022;39(1):664–674. doi:10.1080/02656736.2021.1991012.
  • European association for the study of the liver, european organisation for research and treatment of cancer. EASL-EORTC Clinical Practice Guidelines: management of Hepatocellular Carcinoma. J Hepatol. 2012;56:908–943.
  • Wright AS, Lee FT, Mahvi DM. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann Surg Oncol. 2003;10(3):275–283. doi:10.1245/aso.2003.03.045.
  • Mukherjee S, Curto S, Albin N, et al. Multiple-antenna microwave ablation: analysis of non-parallel antenna implants. International Society for Optics and Photonics; 2015 cited 2018 Jan 17]. p. 93260U. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9326/93260U/Multiple-antenna-microwave-ablation–analysis-of-non-parallel-antenna/10.1117/12.2080349.short. doi:10.1117/12.2080349.
  • Simo KA, Tsirline VB, Sindram D, et al. Microwave ablation using 915-MHz and 2.45-GHz systems: what are the differences? HPB (Oxford). 2013;15(12):991–996. doi:10.1111/hpb.12081.
  • Laimer G, Schullian P, Bale R. Stereotactic thermal ablation of liver tumors: 3D planning, multiple needle approach, and intraprocedural image fusion are the key to Success-A narrative review. Biology (Basel). 2021;10(7):644. doi:10.3390/biology10070644.
  • Goldberg SN. Can the injection of adjuvant gels accelerate heating for more robust thermal ablation of tumors? Radiology. 2019;291(2):511–512. doi:10.1148/radiol.2019190074.
  • Paulet E, Aubé C, Pessaux P, et al. Factors limiting complete tumor ablation by radiofrequency ablation. Cardiovasc Intervent Radiol. 2008;31(1):107–115. doi:10.1007/s00270-007-9208-1.
  • Atwell TD, Carter RE, Schmit GD, et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol. 2012;23(1):48–54. doi:10.1016/j.jvir.2011.09.008.
  • Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28(4):476–480. doi:10.1007/s00270-004-0284-1.
  • Park WKC, Maxwell AWP, Frank VE, et al. Evaluation of a novel thermal accelerant for augmentation of microwave energy during image-guided tumor ablation. Theranostics. 2017;7(4):1026–1035. doi:10.7150/thno.18191.
  • Park WKC, Maxwell AWP, Frank VE, et al. The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study. Int J Hyperthermia. 2018;34(1):11–18. doi:10.1080/02656736.2017.1317367.
  • Wang S, Zhang N, Hu T, et al. Viscosity-Lowering effect of amino acids and salts on highly concentrated solutions of two IgG1 monoclonal antibodies. Mol Pharm. 2015;12(12):4478–4487. doi:10.1021/acs.molpharmaceut.5b00643.
  • Park WKC, Dupuy DE, Walsh EG. Thermal accelerant compositions and methods of use [Internet]. 2020 [cited 2023 Feb 21]. Available from: https://patents.google.com/patent/US10722289B2/en.
  • Maxwell AWP, Park WKC, Baird GL, et al. Effects of a thermal accelerant gel on microwave ablation zone volumes in lung: a porcine study. Radiology. 2019;291(2):504–510. doi:10.1148/radiol.2019181652.
  • Maxwell AWP, Park WKC, Baird GL, et al. Adjuvant thermal accelerant gel use increases microwave ablation zone temperature in porcine liver as measured by MR thermometry. J Vasc Interv Radiol. 2020;31(8):1357–1364. doi:10.1016/j.jvir.2020.01.010.
  • Cavagnaro M, Amabile C, Bernardi P, et al. A minimally invasive antenna for microwave ablation therapies: design, performances, and experimental assessment. IEEE Trans Biomed Eng. 2011;58(4):949–959. doi:10.1109/TBME.2010.2099657.
  • Mohtashami Y, Hagness SC, Behdad N. A hybrid slot/monopole antenna with directional heating patterns for microwave ablation. IEEE Trans. Antennas Propagat. 2017;65(8):3889–3896. doi:10.1109/TAP.2017.2714020.
  • Yang D, Bertram JM, Converse MC, et al. A floating sleeve antenna yields localized hepatic microwave ablation. IEEE Trans Biomed Eng. 2006;53(3):533–537. doi:10.1109/TBME.2005.869794.
  • Brace CL, Laeseke PF, van der Weide DW, et al. Microwave ablation with a triaxial antenna: results in ex vivo bovine liver. IEEE Trans Microw Theory Tech. 2005;53(1):215–220. doi:10.1109/TMTT.2004.839308.
  • Etoz S, Brace CL. Analysis of microwave ablation antenna optimization techniques. Int J RF Microw Comput Aided Eng. 2018;28(3):e21224. doi:10.1002/mmce.21224.
  • Sawicki JF, Shea JD, Behdad N, et al. The impact of frequency on the performance of microwave ablation. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Group. 2016;1–8.
  • Bottiglieri A, Ruvio G, O’Halloran M, et al. Exploiting tissue dielectric properties to shape microwave thermal ablation zones. Sensors. 2020;20(14):3960. doi:10.3390/s20143960.
  • Deshazer G, Merck D, Hagmann M, et al. Physical modeling of microwave ablation zone clinical margin variance. Med Phys. 2016;43(4):1764–1776. doi:10.1118/1.4942980.
  • Cavagnaro M, Pinto R, Lopresto V. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation. Phys Med Biol. 2015;60(8):3287–3311. doi:10.1088/0031-9155/60/8/3287.
  • Sebek J, Taeprasartsit P, Wibowo H, et al. Microwave ablation of lung tumors: a probabilistic approach for simulation-based treatment planning. Med Phys. 2021;48(7):3991–4003. doi:10.1002/mp.14923.
  • Ji Z, Brace CL. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Phys Med Biol. 2011;56(16):5249–5264. doi:10.1088/0031-9155/56/16/011.
  • Lopresto V, Pinto R, Lovisolo GA, et al. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Phys Med Biol. 2012;57(8):2309–2327. doi:10.1088/0031-9155/57/8/2309.
  • Bhattacharya A, Mahajan RL. Temperature dependence of thermal conductivity of biological tissues. Physiol Meas. 2003;24(3):769–783. doi:10.1088/0967-3334/24/3/312.
  • Lopresto V, Argentieri A, Pinto R, et al. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Phys Med Biol. 2019;64(10):105016. doi:10.1088/1361-6560/ab1663.
  • Fallahi H, Sebek J, Prakash P. Broadband dielectric properties of ex vivo bovine liver tissue characterized at ablative temperatures. IEEE Trans Biomed Eng. 2021;68(1):90–98. doi:10.1109/TBME.2020.2996825.
  • Faridi P, Keselman P, Fallahi H, et al. Experimental assessment of microwave ablation computational modeling with MR thermometry. Med Phys. 2020;47(9):3777–3788. doi:10.1002/mp.14318.
  • Deshazer G, Hagmann M, Merck D, et al. Computational modeling of 915 MHz microwave ablation: comparative assessment of temperature-dependent tissue dielectric models. Med Phys. 2017;44(9):4859–4868. doi:10.1002/mp.12359.
  • IT’IS Foundation. Tissue Properties Database V4.1 [Internet]. IT’IS Foundation; 2022 [cited 2023 May 8]. Available from: https://itis.swiss/virtual-population/tissue-properties/downloads/database-v4-1/.
  • Hall SK, Ooi EH, Payne SJ. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int J Hyperthermia. 2015;31(5):538–550. doi:10.3109/02656736.2015.1032370.
  • Shrivastava D, Vaughan JT. A generic bioheat transfer thermal model for a perfused tissue. J Biomech Eng. 2009;131(7):074506.
  • Pearce JA. Models for thermal damage in tissues: processes and applications. Crit Rev Biomed Eng. 2010;38(1):1–20. doi:10.1615/critrevbiomedeng.v38.i1.20.
  • Haemmerich D. 1 - Mathematical modeling of heat transfer in biological tissues (bioheat transfer). In: Prakash P, Srimathveeravalli G, editors. Principles and technologies for electromagnetic energy based therapies. Academic Press; 2022. p. 1–24. doi:10.1016/B978-0-12-820594-5.00012-5.