1,525
Views
2
CrossRef citations to date
0
Altmetric
Brief Report

The use of histotripsy as intratumoral immunotherapy beyond tissue ablation—the rationale for exploring the immune effects of histotripsy

, , , , , , , , , , & show all
Article: 2263672 | Received 07 Aug 2023, Accepted 20 Sep 2023, Published online: 08 Oct 2023

References

  • Kelly PN. The cancer immunotherapy revolution SCIENCE 23. Science. 2018;359(6382):1344–1345. doi: 10.1126/science.359.6382.1344.
  • Fisher ER, Turnbull RB. Jr The cystologic demonstration and significance of tumor cells in the mesenteric venous blood in patients with colorectal carcinoma. Surg Gynecol Obstet. 1955;100:102–108.
  • Turnbull RB. The No-Touch isolation technique of resection. JAMA. 1975;231(11):1181–1182. doi: 10.1001/jama.1975.03240230053026.
  • Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013; 23(5):573–581. doi: 10.1016/j.ccr.2013.04.017.
  • Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155–167. doi: 10.1038/nrclinonc.2016.144.
  • Burotto M, Wilkerson J, Stein WD, et al. Adjuvant and neoadjuvant cancer therapies: a historical review and a rational approach to understand outcomes. Semin Oncol. 2019;46(1):83–99. doi: 10.1053/j.seminoncol.2019.01.002.
  • Rosenberg SA. A journey in science: immersion in the search for effective cancer immunotherapies. Mol Med. 2021;27(1):63. doi: 10.1186/s10020-021-00321-3.
  • Allison JP. Immune checkpoint blockade in cancer therapy: the 2015 Lasker-DeBakey clinical medical research award. JAMA. 2015;314(11):1113–1114. doi: 10.1001/jama.2015.11929.
  • Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801. doi: 10.1038/s41467-020-17670-y.
  • Sullivan RJ, Weber JS. Immune-related toxicities of checkpoint inhibitors: mechanisms and mitigation strategies. Nat Rev Drug Discov. 2022;21(7):495–508. doi: 10.1038/s41573-021-00259-5.
  • Johnson DB, Nebhan CA, Moslehi JJ, et al. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254–267. doi: 10.1038/s41571-022-00600-w.
  • Bilusic M, Gulley JL. Neoadjuvant immunotherapy: an evolving paradigm shift? J Natl Cancer Inst. 2021; 113(7):799–800. doi: 10.1093/jnci/djaa217.
  • Minchinton A, Tannock I. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–592. doi: 10.1038/nrc1893.
  • Hong WX, Haebe S, Lee AS, et al. Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res. 2020;26(13):3091–3099. doi: 10.1158/1078-0432.CCR-19-3642.
  • Champiat S, Tselikas L, Farhane S, et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res. 2021;27(3):665–679. doi: 10.1158/1078-0432.CCR-20-0473.
  • Melero I, Castanon E, Alvarez M, et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18(9):558–576. doi: 10.1038/s41571-021-00507-y.
  • Sheth RA, Murthy R, Hong DS, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer. JAMA Netw Open. 2020;3(7):e207911. doi: 10.1001/jamanetworkopen.2020.7911.
  • Muñoz NM, Williams M, Dixon K, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021;9(2):e001800. doi: 10.1136/jitc-2020-001800.
  • Nia HT, Munn LL, Jain RK. Mapping physical tumor microenvironment and drug delivery. Clin Cancer Res. 2019; 25(7):2024–2026. doi: 10.1158/1078-0432.CCR-18-3724.
  • Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018; 4(4):292–319. Epub 2018 Mar 13.PMID: 29606314 doi: 10.1016/j.trecan.2018.02.005.
  • Dall’Olio FG, Marabelle A, Caramella C, et al. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2022;19(2):75–90. doi: 10.1038/s41571-021-00564-3.
  • Kepp O, Marabelle A, Zitvogel L, et al. Oncolysis without viruses—inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol. 2020;17(1):49–64. doi: 10.1038/s41571-019-0272-7.
  • Cranston D, Leslie T, Ter Haar G. A review of High-Intensity focused ultrasound in urology. Cancers (Basel). 2021; 13(22):5696. doi: 10.3390/cancers13225696.
  • Hersh AM, Bhimreddy M, Weber-Levine C, et al. Applications of focused ultrasound for the treatment of glioblastoma: a new frontier. Cancers (Basel). 2022; 14(19):4920. doi: 10.3390/cancers14194920.
  • Zhang N, Wang J, Foiret J, et al. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev. 2021;178:113906. doi: 10.1016/j.addr.2021.113906.
  • Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused ultrasound for immunomodulation of the tumor microenvironment. J Immunol. 2020;205(9):2327–2341. doi: 10.4049/jimmunol.1901430.
  • Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, et al. Immunological effects of histotripsy for cancer therapy. Front Oncol. 2021;11:681629. doi: 10.3389/fonc.2021.681629.
  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321–327. doi: 10.1038/nrc1591.
  • Xu Z, Hall TL, Vlaisavljevich E, et al. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561–575. doi: 10.1080/02656736.2021.1905189.
  • Fite BZ, Wang J, Kare AJ, et al. Immune modulation resulting from MR-guided high intensity focused ultrasound in a model of murine breast cancer. Sci Rep. 2021; Jan 1311(1):927. doi: 10.1038/s41598-020-80135-1.PMID:33441763.
  • Hu Z, Yang XY, Liu Y, et al. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on apcs. Biochem Biophys Res Commun. 2005;335(1):124–131. doi: 10.1016/j.bbrc.2005.07.071.
  • Hu Z, Yang XY, Liu Y, et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med. 2007;5(1):34. doi: 10.1186/1479-5876-5-34.
  • Xing Y, Lu X, Pua EC, et al. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem Biophys Res Commun. 2008; 375(4):645–650. doi: 10.1016/j.bbrc.2008.08.072.
  • Huang X, Yuan F, Liang M, et al. M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer. PLoS One. 2012;7(7):e41632. doi: 10.1371/journal.pone.0041632.
  • Pahk KJ, Shin CH, Bae IY, et al. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. Sci Rep. 2019; 9(1):9050. doi: 10.1038/s41598-019-45542-z.
  • Schade GR, Wang Y-N, D'Andrea S, et al. Boiling histotripsy ablation of renal cell carcinoma in the eker rat promotes a systemic inflammatory response. Ultrasound Med Biol. 2019;45(1):137–147. doi: 10.1016/j.ultrasmedbio.2018.09.006.
  • Eranki A, Srinivasan P, Ries M, et al. High-intensity focused ultrasound (hifu) triggers immune sensitization of refractory murine neuroblastoma to checkpoint inhibitor therapy. Clin Cancer Res. 2020;26(5):1152–1161. doi: 10.1158/1078-0432.CCR-19-1604.
  • Worlikar T, Mendiratta-Lala M, Vlaisavljevich E, et al. Effects of histotripsy on local tumor progression in an in vivo orthotopic rodent liver tumor model. BME Front. 2020;2020 doi: 10.34133/2020/9830304.
  • Abe S, Nagata H, Crosby EJ, et al. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity. J Immunother Cancer. 2022; 10(1):e003717. doi: 10.1136/jitc-2021-003717.
  • van den Bijgaart RJE, Mekers VE, Schuurmans F, et al. Mechanical high-intensity focused ultrasound creates unique tumor debris enhancing dendritic cell-induced T cell activation. Front Immunol. 2022; 13:1038347. doi: 10.3389/fimmu.2022.1038347.
  • Worlikar T, Zhang M, Ganguly A, et al. Impact of histotripsy on development of intrahepatic metastases in a rodent liver tumor model. Cancers (Basel). 2022;14(7):1612. doi: 10.3390/cancers14071612.
  • Ruger LN, Hay AN, Gannon JM, et al. Histotripsy ablation of spontaneously occurring canine bone tumors. IEEE Trans Biomed Eng. 2022;PP(1):331–342. doi: 10.1109/TBME.2022.3191069.
  • Iwanicki I, Wu LL, Flores-Guzman F, et al. Histotripsy induces apoptosis and reduces hypoxia in a neuroblastoma xenograft model. Int J Hyperth. 2023;40.
  • Pepple AL, Guy JL, McGinnis R, et al. Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation. Front Immunol. 2023;14:1012799. doi: 10.3389/fimmu.2023.1012799.
  • Vidal-Jove J, Serres X, Vlaisavljevich E, et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperthermia. 2022;39(1):1115–1123. doi: 10.1080/02656736.2022.2112309.PMID:.36002243
  • Padilla T, TER Haar GAIL. Recommendations for reporting therapeutic ultrasound treatment parameters, ultrasound in. Ultrasound Med Biol. 2022;48(7):1299–1308. doi: 10.1016/j.ultrasmedbio.2022.03.001.
  • Chen M, Kim H, Zhang B, et al. Intracorporeal Sonoporation-Induced Drug/Gene Delivery Using a Catheter Ultrasound Transducer. 2022 IEEE Int Ultrason Symp. IEEE; 2022. p. 1–4.
  • Yang T, Jin Y, Neogi A. Acoustic attenuation and dispersion in fatty tissues and tissue phantoms influencing ultrasound biomedical imaging. ACS Omega. 2023;8(1):1319–−1330. * doi: 10.1021/acsomega.2c06750.
  • Qu S, Worlikar T, Felsted AE, et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunother Cancer. 2020;8(1):e000200. doi: 10.1136/jitc-2019-000200.
  • Li S, Wei Y, Zhang B, et al. Research progress and clinical evaluation of histotripsy: a narrative review. Ann Transl Med. 2023;11(6):263–263. doi: 10.21037/atm-22-2578.
  • Shao Q, O'Flanagan S, Lam T, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia. 2019;36(1):130–138. Epub 2019 Jan 24. PMID: 30676126. doi: 10.1080/02656736.2018.1539253.
  • Brito-Orama S, Sheth RA. The contemporary landscape and future directions of intratumoral immunotherapy. J Immunother Precis Oncol. 2023; Jan 176(2):84–90. doi: 10.36401/JIPO-22-8.
  • Telli ML, Nagata H, Wapnir I, et al. Intratumoral plasmid IL12 expands CD8+ T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to anti-PD-1 therapy. Clin Cancer Res. 2021; 27(9):2481–2493. doi: 10.1158/1078-0432.CCR-20-3944.
  • Tang J, Tang J, Li H, et al. Mechanical destruction using a minimally invasive ultrasound needle induces anti-tumor immune responses and synergizes with the anti-PD-L1 blockade. Cancer Lett. 2023;554:216009. doi: 10.1016/j.canlet.2022.216009.
  • Wah TM, Pech M, Thormann M, et al. A multi-centre, single arm, non-randomized, prospective European trial to evaluate the safety and efficacy of the HistoSonics system in the treatment of primary and metastatic liver cancers (#HOPE4LIVER). Cardiovasc Intervent Radiol. 2023; 46(2):259–267. Epub 2022 Nov 15.PMID: 36380155 doi: 10.1007/s00270-022-03309-6.