757
Views
0
CrossRef citations to date
0
Altmetric
Research Article

HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia

ORCID Icon, , , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2272067 | Received 13 Jul 2023, Accepted 12 Oct 2023, Published online: 24 Oct 2023

References

  • Attaluri A, Kandala SK, Zhou HM, et al. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. Int J Hyperthermia. 2020;37(3):108–119. doi: 10.1080/02656736.2020.1798514.
  • Sharma A, Ozayral S, Caserto JS, et al. Increased uptake of doxorubicin by cells undergoing heat stress does not explain its synergistic cytotoxicity with hyperthermia. Int J Hyperthermia. 2019;36(1):712–720. doi: 10.1080/02656736.2019.1631494.
  • Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52(6):1653–1661. doi: 10.1016/j.eururo.2006.11.023.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324. doi: 10.1007/s11060-010-0389-0.
  • Qu Y, Li JB, Ren J, et al. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of MnxZn1-xFe2O4 nanoparticles for induced tumor cell apoptosis. ACS Appl Mater Interfaces. 2014;6(19):16867–16879. doi: 10.1021/am5042934.
  • Grimmig T, Moll EM, Kloos K, et al. Upregulated heat shock proteins after hyperthermic chemotherapy point to induced cell survival mechanisms in affected tumor cells from peritoneal carcinomatosis. Cancer Growth Metastasis. 2017;10:1179064417730559. doi: 10.1177/1179064417730559.
  • Attaluri A, Kandala K, Wabler M, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperthermia. 2015;31(4):359–374. doi: 10.3109/02656736.2015.1005178.
  • Oei AL, Korangath P, Mulka K, et al. Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. Int J Hyperthermia. 2019;36(sup1):47–63. doi: 10.1080/02656736.2019.1685686.
  • Chao Y, Chen GB, Liang C, et al. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Lett. 2019;19(7):4287–4296. doi: 10.1021/acs.nanolett.9b00579.
  • Yan B, Liu C, Wang SY, et al. Magnetic hyperthermia induces effective and genuine immunogenic tumor cell death with respect to exogenous heating. J Mater Chem B. 2022;10(28):5364–5374. doi: 10.1039/d2tb01004f.
  • Healy S, Bakuzis AF, Goodwill PW, et al. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(3):e1779. doi: 10.1002/wnan.1779.
  • Sharma A, Jangam AA, Yung Shen JL, et al. Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Front Therm Eng. 2023;3:1–13. doi: 10.3389/fther.2023.1131262.
  • Kandala SK, Liapi E, Whitcomb LL, et al. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Int J Hyperthermia. 2019;36(1):115–129. doi: 10.1080/02656736.2018.1538538.
  • Stauffer PR, Sneed PK, Hashemi H, et al. Practical induction-heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans Biomed Eng. 1994;41(1):17–28. doi: 10.1109/10.277267.
  • Attaluri A, Jackowski J, Sharma A, et al. Design and construction of a maxwell-type induction coil for magnetic nanoparticle hyperthermia. Int J Hyperthermia. 2020;37(1):1–14. doi: 10.1080/02656736.2019.1704448.
  • Ivkov R, DeNardo SJ, Daum W, et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res. 2005;11(19 Pt 2):7093S–7103S. doi: 10.1158/1078-0432.ccr-1004-0016.
  • Tay ZW, Chandrasekharan P, Chiu-Lam A, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 2018;12(4):3699–3713. doi: 10.1021/acsnano.8b00893.
  • Hensley D, Tay ZW, Dhavalikar R, et al. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol. 2017;62(9):3483–3500. doi: 10.1088/1361-6560/aa5601.
  • Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2013;29(8):715–729. doi: 10.3109/02656736.2013.836758.
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys. 2011;109(8):17. doi: 10.1063/1.3551582.
  • Noh SH, Na W, Jang JT, et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 2012;12(7):3716–3721. doi: 10.1021/nl301499u.
  • Hergt R, Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311(1):187–192. doi: 10.1016/j.jmmm.2006.10.1156.
  • Kumar A, Attaluri A, Mallipudi R, et al. Method to reduce non-specific tissue heating of small animals in solenoid coils. Int J Hyperthermia. 2013;29(2):106–120. doi: 10.3109/02656736.2013.764023.
  • Hedayati M, Abubaker-Sharif B, Khattab M, et al. An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. Int J Hyperthermia. 2018;34(4):373–381. doi: 10.1080/02656736.2017.1354403.
  • Carlton H, Ivkov R. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. J Appl Phys. 2023;133(4):044302. doi: 10.1063/5.0131058.
  • Li DH, Smith BD. Deuterated indocyanine green (ICG) with extended aqueous storage Shelf-Life: chemical and clinical implications. Chemistry. 2021;27(58):14535–14542. doi: 10.1002/chem.202102816.
  • Goodwill PW, Conolly SM. Multidimensional X-Space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–1590. doi: 10.1109/tmi.2011.2125982.
  • Yu EY, Bishop MI, Zheng B, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 2017;17(3):1648–1654. doi: 10.1021/acs.nanolett.6b04865.
  • Bulte JWM. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv Rev. 2019;138:293–301. doi: 10.1016/j.addr.2018.12.007.
  • Chandrasekharan P, Tay ZW, Hensley D, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics. 2020;10(7):2965–2981. doi: 10.7150/thno.40858.
  • Stehning C, Gleich B, Rahmer J. Simultaneous magnetic particle imaging (MPI) and temperature mapping using multi-color MPI. Int J Magn Particle Imaging. 2016;2(2):1–6.
  • Kut C, Zhang Y, Hedayati M, et al. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine (Lond). 2012;7(11):1697–1711. doi: 10.2217/nnm.12.65.
  • Yang CT, Korangath P, Stewart J, et al. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. Int J Hyperthermia. 2020;37(3):59–75. doi: 10.1080/02656736.2020.1776901.