444
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetic induction heating and drug release properties of magnetic carbon nanotubes

, ORCID Icon, &
Article: 2280448 | Received 01 Aug 2023, Accepted 02 Nov 2023, Published online: 21 Nov 2023

References

  • Hassanzadeh-Tabrizi SA, Norbakhsh H, Pournajaf R, et al. Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceram Int. 2021;47(13):18167–18176. doi: 10.1016/j.ceramint.2021.03.135.
  • Salmanian G, Hassanzadeh-Tabrizi SA, Koupaei N. Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: a review. Int J Biol Macromol. 2021;184:618–635. doi: 10.1016/j.ijbiomac.2021.06.108.
  • Zheng D, Ramos-Sebastian A, Jung WS, et al. Fabrication and preliminary evaluation of alginate hydrogel-based magnetic springs with actively targeted heating and drug release mechanisms for cancer therapy. Compos Part B: Eng. 2022;230:109551. doi: 10.1016/j.compositesb.2021.109551.
  • Cividalli A, Livdi E, Ceciarelli F, et al. Hyperthermia and paclitaxel-epirubicin chemotherapy: enhanced cytotoxic effect in a murine mammary adenocarcinoma. Int J Hyperthermia. 2000;16(1):61–71. doi: 10.1080/026567300285420.
  • Hildebrandt B, Wust P. Interactions between hyperthermia and cytotoxic drugs. In: Ceelen WP, editor. Peritoneal carcinomatosis: a multidisciplinary approach. Boston (MA): Springer US, 2007, pp. 185–193.
  • Urano M, Kuroda M, Nishimura Y. Invited review: for the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia. 1999;15(2):79–107. doi: 10.1080/026567399285765.
  • Spirou SV, Basini M, Lascialfari A, et al. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials. 2018;8(6):401. doi: 10.3390/nano8060401.
  • Zhan W, Wang CH. Convection enhanced delivery of chemotherapeutic drugs into brain tumour. J Control Release. 2018;271:74–87. doi: 10.1016/j.jconrel.2017.12.020.
  • Kimpton M, Wells PS, Carrier M. Apixaban for the prevention of venous thromboembolism in high-risk ambulatory cancer patients receiving chemotherapy: rational and design of the AVERT trial. Thromb Res. 2018;164(Suppl 1):s124–S129. doi: 10.1016/j.thromres.2018.01.018.
  • Tang L, Xiao Q, Mei Y, et al. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology. 2021;19(1):423. doi: 10.1186/s12951-021-01174-y.
  • Saleemi MA, Kong YL, Yong PVC, et al. An overview of recent development in therapeutic drug carrier system using carbon nanotubes. J Drug Delivery Sci Technol. 2020;59:101855. doi: 10.1016/j.jddst.2020.101855.
  • Li B, Harlepp S, Gensbittel V, et al. Near infra-red light responsive carbon nanotubes@mesoporous silica for photothermia and drug delivery to cancer cells. Mater Today Chem. 2020;17:100308. doi: 10.1016/j.mtchem.2020.100308.
  • Maleki R, Afrouzi HH, Hosseini M, et al. pH-sensitive loading/releasing of doxorubicin using single-walled carbon nanotube and multi-walled carbon nanotube: a molecular dynamics study. Comput Methods Programs Biomed. 2020;186:105210. doi: 10.1016/j.cmpb.2019.105210.
  • Chudoba D, Jażdżewska M, Łudzik K, et al. Description of release process of doxorubicin from modified carbon nanotubes. Int J Mol Sci. 2021;22(21):12003. doi: 10.3390/ijms222112003.
  • Ji J, Liu M, Meng Y, et al. Experimental study of magnetic multi-walled carbon nanotube-doxorubicin conjugate in a lymph node metastatic model of breast cancer. Med Sci Monit. 2016;22:2363–2373. doi: 10.12659/msm.898597.
  • Zhang XX, Huang HY, Chen LQ, et al. Physicochemical characterization and cytotoxicity of chitosan-modified single walled carbon nanotubes as drug carriers. J. Pharm. Investig. 2019;49(1):57–65. doi: 10.1007/s40005-018-0384-6.
  • Xie M, Zhang F, Liu L, et al. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl Surf Sci. 2018;440:853–860. doi: 10.1016/j.apsusc.2018.01.175.
  • Saeednia L, Yao L, Cluff K, et al. Sustained releasing of methotrexate from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega. 2019;4(2):4040–4048. doi: 10.1021/acsomega.8b03212.
  • Li H, Sun X, Li Y, et al. Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater Sci Eng C Mater Biol Appl. 2019;97:222–229. doi: 10.1016/j.msec.2018.11.042.
  • Xiao D, Dramou P, He H, et al. Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system. J Nanopart Res. 2012;14(7):984. doi: 10.1007/s11051-012-0984-4.
  • Guo J, Jiang H, Teng Y, et al. Recent advances in magnetic carbon nanotubes: synthesis, challenges and highlighted applications. J Mater Chem B. 2021;9(44):9076–9099. doi: 10.1039/d1tb01242h.
  • Gneveckow U, Jordan A, Scholz R, et al. Description and characterization of the novel hyperthermia- and thermoablation-system for clinical magnetic fluid hyperthermia. Med Phys. 2004;31(6):1444–1451. doi: 10.1118/1.1748629.
  • Ferk G, Drofenik M, Lisjak D, et al. Synthesis and characterization of Mg1+xFe2 − 2xTixO4 nanoparticles with an adjustable curie point. J Magn Magn Mater. 2014;350:124–128. doi: 10.1016/j.jmmm.2013.09.037.
  • Haïk Dunn I, Jacobo SE, Bercoff PG. Structural and magnetic influence of yttrium-for-iron substitution in cobalt ferrite. J Alloys Compd. 2017;691:130–137. doi: 10.1016/j.jallcom.2016.08.223.
  • Yu X, Yang R, Wu C, et al. Effect of chromium ion substitution of ZnCo ferrites on magnetic induction heating. J Alloys Compd. 2020;830:154724. doi: 10.1016/j.jallcom.2020.154724.
  • Yang R, Yu X, Li H, et al. Effect of Mg doping on magnetic induction heating of Zn-Co ferrite nanoparticles. J Alloys Compd. 2021;851:156907. doi: 10.1016/j.jallcom.2020.156907.
  • Barati MR, Suzuki K, Selomulya C, et al. New Tc-tuned manganese ferrite-based magnetic implant for hyperthermia therapy application. IEEE Trans. Magn. 2013;49(7):3460–3463. doi: 10.1109/TMAG.2013.2246860.
  • Liu Q, Tian J, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem Int Ed Engl. 2014;53(26):6710–6714. doi: 10.1002/anie.201404161.
  • Andrade NF, Vasconcelos TL, Gouvea CP, et al. Linear carbon chains encapsulated in multiwall carbon nanotubes: resonance raman spectroscopy and transmission electron microscopy studies. Carbon. 2015;90:172–180. doi: 10.1016/j.carbon.2015.04.001.
  • Zhang Y, Yang Z, Yin D, et al. Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater. 2010;322(21):3470–3475. doi: 10.1016/j.jmmm.2010.06.047.
  • Liu Y, Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes. Carbon. 2005;43(1):47–52. doi: 10.1016/j.carbon.2004.08.019.
  • Qin C, Shen J, Hu Y, et al. Facile attachment of magnetic nanoparticles to carbon nanotubes via robust linkages and its fabrication of magnetic nanocomposites. Compos Sci Technol. 2009;69(3–4):427–431. doi: 10.1016/j.compscitech.2008.11.011.
  • Allaboun H, Fares MM, Abu Al-Rub FA. Removal of uranium and associated contaminants from aqueous solutions using functional carbon nanotubes-sodium alginate conjugates. Minerals. 2016;6(1):9. doi: 10.3390/min6010009.
  • Khakpour R, Tahermansouri H. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions. Int J Biol Macromol. 2018;109:598–610. doi: 10.1016/j.ijbiomac.2017.12.105.
  • Wilson D, Langell MA. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci. 2014;303:6–13. doi: 10.1016/j.apsusc.2014.02.006.
  • Wirecka R, Lachowicz D, Berent K, et al. Ion distribution in iron oxide, zinc and manganese ferrite nanoparticles studied by XPS combined with argon gas cluster ion beam sputtering. Surf Interfaces. 2022;30:101865. doi: 10.1016/j.surfin.2022.101865.
  • Alibeigi S, Vaezi MR. Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+. Chem. Eng. Technol. 2008;31(11):1591–1596. doi: 10.1002/ceat.200800093.
  • Nikolaev VI, Shipilin AM. The influence of breaking of exchange bonds on the curie temperature. Phys. Solid State. 2003;45(6):1079–1080. doi: 10.1134/1.1583793.
  • Ghosh R, Pradhan L, Devi YP, et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem. 2011;21(35):13388–13398. doi: 10.1039/c1jm10092k.
  • Zhang X, Meng L, Lu Q, et al. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 2009;30(30):6041–6047. doi: 10.1016/j.biomaterials.2009.07.025.
  • Al Faraj A, Shaik AP, Shaik AS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomedicine. 2015;10:157–168. doi: 10.2147/IJN.S75074.
  • Liu Z, Sun X, Nakayama-Ratchford N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007;1(1):50–56. doi: 10.1021/nn700040t.