490
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative thermo-brachytherapy

, , , , , & show all
Article: 2299480 | Received 02 Oct 2023, Accepted 21 Dec 2023, Published online: 08 Jan 2024

References

  • Gas P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przegl Elektrotech. 2011;87:37–40.
  • Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia. 2001;17(1):1–18. doi: 10.1080/02656730150201552.
  • Stauffer PR, Goldberg SN. Introduction: thermal ablation therapy. Int J Hyperthermia. 2004;20(7):671–677. doi: 10.1080/02656730400007220.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia. 2013;29(8):706–714. doi: 10.3109/02656736.2013.837200.
  • Giustini AJ, Petryk AA, Cassim SM, et al. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. 2010;1(02):17–32. doi: 10.1142/S1793984410000067.
  • Ashikbayeva Z, Tosi D, Balmassov D, et al. Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer. Nanomaterials (Basel). 2019;9(9):1195. doi: 10.3390/nano9091195.
  • Jordan A. Hyperthermia classic commentary: ‘Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia’ by andreas Jordan et al., international journal of hyperthermia, 1993;9:51-68. Int J Hyperthermia. 2009;25(7):512–516. doi: 10.3109/02656730903183445.
  • Jordan A, Wust P, Fähling H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids—physical evaluation of their potential for hyperthermia. Int J Hyperthermia. 1993;9(1):51–68. doi: 10.3109/02656739309061478.
  • Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2013;29(8):715–729. doi: 10.3109/02656736.2013.836758.
  • Soetaert F, Korangath P, Serantes D, et al. Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev. 2020;163–164:65–83. doi: 10.1016/j.addr.2020.06.025.
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24(6):467–474. doi: 10.1080/02656730802104757.
  • Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia. 2013;29(8):739–751. doi: 10.3109/02656736.2013.826825.
  • Wells J, Ortega D, Steinhoff U, et al. Challenges and recommendations for magnetic hyperthermia characterization measurements. Int J Hyperthermia. 2021;38(1):447–460. doi: 10.1080/02656736.2021.1892837.
  • Brem RF. Radiofrequency ablation of breast cancer: a step forward. Radiology. 2018;289(2):325–326. doi: 10.1148/radiol.2018181784.
  • van de Voort EM, Struik GM, Birnie E, et al. Thermal ablation as an alternative for surgical resection of small (≤2 cm) breast cancers: a meta-analysis. Clin Breast Cancer. 2021;21(6):e715–e730. doi: 10.1016/j.clbc.2021.03.004.
  • Zulkifli D, Manan HA, Yahya N, et al. The applications of high-intensity focused ultrasound (HIFU) ablative therapy in the treatment of primary breast cancer: a systematic review. Diagnostics (Basel). 2023;13(15):2595. doi: 10.3390/diagnostics13152595.
  • van de Voort EMF, Struik GM, Koppert LB, et al. Treatment of early-stage breast cancer with percutaneous thermal ablation, an open-label randomised phase 2 screening trial: rationale and design of the THERMAC trial. BMJ Open. 2021;11(9):e052992. doi: 10.1136/bmjopen-2021-052992.
  • García-Tejedor A, Guma A, Soler T, et al. Radiofrequency ablation followed by surgical excision versus lumpectomy for early stage breast cancer: a randomized phase II clinical trial. Radiology. 2018;289(2):317–324. doi: 10.1148/radiol.2018180235.
  • Alphandéry E. Perspectives of breast cancer thermotherapies. J Cancer. 2014;5(6):472–479. doi: 10.7150/jca.8693.
  • Hilger I, Andrä W, Hergt R, et al. Magnetische thermotherapie von tumoren der brust: ein experimenteller therapieansatz. Rofo. 2005;177(4):507–515. doi: 10.1055/s-2005-858021.
  • Maier A, van Oossanen R, van Rhoon GC, et al. From structure to function: understanding synthetic conditions in relation to magnetic properties of hybrid Pd/Fe-oxide nanoparticles. Nanomaterials (Basel). 2022;12(20):3649. doi: 10.3390/nano12203649.
  • van Oossanen RG, Brown JMC, Maier A, et al. Feasibility study on the radiation dose by radioactive magnetic core-shell nanoparticles for open-source brachytherapy. Cancers (Basel). 2022;14(22):5497. doi: 10.3390/cancers14225497.
  • Meattini I, Becherini C, Boersma L, et al. European society for radiotherapy and oncology advisory committee in radiation oncology practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol. 2022;23(1):e21–e31. doi: 10.1016/S1470-2045(21)00539-8.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng. 1984;31(1):70–75. doi: 10.1109/TBME.1984.325372.
  • Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia. 2013;29(8):790–800. doi: 10.3109/02656736.2013.822993.
  • Natividad E, Castro M, Mediano A. Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater. 2009;321(10):1497–1500. doi: 10.1016/j.jmmm.2009.02.072.
  • Wildeboer R, Southern P, Pankhurst Q. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D: Appl Phys. 2014;47(49):495003. doi: 10.1088/0022-3727/47/49/495003.
  • Gonzalez-Fernandez M, Torres T, Andrés-Vergés M, et al. Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem. 2009;182(10):2779–2784. doi: 10.1016/j.jssc.2009.07.047.
  • Salunkhe AB, Khot VM, Pawar SH. Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem. 2014;14(5):572–594. doi: 10.2174/1568026614666140118203550.
  • Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater. 2014;354:163–172. doi: 10.1016/j.jmmm.2013.11.006.
  • Obaidat IM, Narayanaswamy V, Alaabed S, et al. Principles of magnetic hyperthermia: a focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry. 2019;5(4):67. doi: 10.3390/magnetochemistry5040067.
  • Vassallo M, Martella D, Barrera G, et al. Improvement of hyperthermia properties of iron oxide nanoparticles by surface coating. ACS Omega. 2023;8(2):2143–2154. doi: 10.1021/acsomega.2c06244.
  • Jiang Q, Ren F, Wang C, et al. On the magnetic nanoparticle injection strategy for hyperthermia treatment. Int J Mech Sci. 2022;235:107707. doi: 10.1016/j.ijmecsci.2022.107707.
  • Salloum M, Ma R, Zhu L. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int J Hyperthermia. 2009;25(4):309–321. doi: 10.1080/02656730902803118.
  • Di Barba P, Dughiero F, Sieni E. Synthesizing distributions of magnetic nanoparticles for clinical hyperthermia. IEEE Trans Magn. 2012;48(2):263–266. doi: 10.1109/TMAG.2011.2174340.
  • Tang Y-D, Jin T, Flesch RC, et al. Simultaneous optimization of injection dose and location for magnetic hyperthermia using metaheuristic algorithms. IEEE Trans Magn. 2020;56(1):1–6. doi: 10.1109/TMAG.2019.2949933.
  • Rodrigues HF, Capistrano G, Bakuzis AF. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int J Hyperthermia. 2020;37(3):76–99. doi: 10.1080/02656736.2020.1800831.
  • Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311(1):187–192. doi: 10.1016/j.jmmm.2006.10.1156.
  • Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions. Electromagn Biol Med. 2020;39(2):49–88. doi: 10.1080/15368378.2020.1741383.
  • Soetaert F, Kandala SK, Bakuzis A, et al. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci Rep. 2017;7(1):6661. doi: 10.1038/s41598-017-07088-w.