770
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Validation of hyperthermia as an enhancer of chemotherapeutic efficacy: insights from a bladder cancer organoid model

, , , , , , , , , , , , , , & show all
Article: 2316085 | Received 20 Oct 2023, Accepted 02 Feb 2024, Published online: 12 Feb 2024

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):1–10. doi:10.3322/caac.21763.
  • Burger M, Catto JWF, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–241. doi:10.1016/j.eururo.2012.07.033.
  • Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int. 2017;119(3):371–380. doi:10.1111/bju.13760.
  • Lenis AT, Lec PM, Chamie K, et al. Bladder cancer: a review. Jama. 2020;324(19):1980–1991. doi:10.1001/jama.2020.17598.
  • Liu K, Zhu J, Song Y-X, et al. Thermal intravesical chemotherapy reduce recurrence rate for non-muscle invasive bladder cancer patients: a meta-analysis. Front Oncol. 2020;10:29. doi:10.3389/fonc.2020.00029.
  • Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (ta, T1, and carcinoma in situ). Eur Urol. 2022;81(1):75–94. doi:10.1016/j.eururo.2021.08.010.
  • Feifer AH, Taylor JM, Tarin TV, et al. Maximizing cure for muscle-invasive bladder cancer: integration of surgery and chemotherapy. Eur Urol. 2011;59(6):978–984. doi:10.1016/j.eururo.2011.01.014.
  • Efstathiou JA, Mouw KW, Gibb EA, et al. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for Muscle-Invasive bladder cancer. Eur Urol. 2019;76(1):59–68. doi:10.1016/j.eururo.2019.01.011.
  • Ploussard G, Daneshmand S, Efstathiou JA, et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: a systematic review. Eur Urol. 2014;66(1):120–137. doi:10.1016/j.eururo.2014.02.038.
  • Angulo JC, Álvarez-Ossorio JL, Domínguez-Escrig JL, et al. Hyperthermic mitomycin C in intermediate-risk non-muscle-invasive bladder cancer: results of the HIVEC-1 trial. Eur Urol Oncol. 2023;6(1):58–66. doi:10.1016/j.euo.2022.10.008.
  • Plata A, et al. Long-Term experience with hyperthermic chemotherapy (HIVEC) using mitomycin-C in patients with non-muscle invasive bladder cancer in Spain. J Clin Med. 2021;10(21):5105.
  • Lammers RJM, Witjes JA, Inman BA, et al. The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur Urol. 2011;60(1):81–93. doi:10.1016/j.eururo.2011.04.023.
  • Ruan Q, Ding D, Wang B, et al. A multi-institutional retrospective study of hyperthermic plus intravesical chemotherapy versus intravesical chemotherapy treatment alone in intermediate and high risk nonmuscle-invasive bladder cancer. Cancer Biol Med. 2021;18(1):308–317. doi:10.20892/j.issn.2095-3941.2020.0125.
  • Álvarez-Maestro M, Guerrero-Ramos F, Rodríguez-Faba O, et al. Current treatments for BCG failure in non-muscle invasive bladder cancer (NMIBC). Actas Urol Esp (Engl Ed. 2021;45(2):93–102.), doi:10.1016/j.acuroe.2020.08.011.
  • Singh S, Kumar S, Srivastava RK, et al. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nat Cell Biol. 2020;22(5):591–602. doi:10.1038/s41556-020-0495-y.
  • Khan S, Mahalingam R, Sen S, et al. Intrinsic interferon signaling regulates the cell death and mesenchymal phenotype of glioblastoma stem cells. Cancers (Basel). 2021;13(21):5284. doi:10.3390/cancers13215284.
  • Cherng Y-G, Chu YC, Yadav VK, et al. Induced mitochondrial alteration and DNA damage via IFNGR-JAK2-STAT1-PARP1 pathway facilitates viral hepatitis associated hepatocellular carcinoma aggressiveness and stemness. Cancers (Basel). 2021;13(11):2755. doi:10.3390/cancers13112755.
  • Teoh JY-C, Kamat AM, Black PC, et al. Recurrence mechanisms of non-muscle-invasive bladder cancer - a clinical perspective. Nat Rev Urol. 2022;19(5):280–294. doi:10.1038/s41585-022-00578-1.
  • Zeng N, Xu M-Y, Sun J-X, et al. Hyperthermia intravesical chemotherapy acts as a promising alternative to bacillus Calmette-Guérin instillation in non-muscle-invasive bladder cancer: a network meta-analysis. Front Oncol. 2023;13:1164932. doi:10.3389/fonc.2023.1164932.
  • Snider JW, 3rd, Datta NR, Vujaskovic Z. Hyperthermia and radiotherapy in bladder cancer. Int J Hyperthermia. 2016;32(4):398–406. doi:10.3109/02656736.2016.1150524.
  • Rao W, Deng ZS, Liu J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng. 2010;38(1):101–116. doi:10.1615/critrevbiomedeng.v38.i1.80.
  • Arends TJH, Witjes JA. Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus Calmette-Guérin for adjuvant treatment of patients with intermediate- and high-risk Non-Muscle-invasive bladder cancer. Eur Urol. 2016;75(2):e26–1052. doi:10.1016/j.eururo.2016.01.006.
  • Guerrero-Ramos F, González-Padilla DA, González-Díaz A, et al. Recirculating hyperthermic intravesical chemotherapy with mitomycin C (HIVEC) versus BCG in high-risk non-muscle-invasive bladder cancer: results of the HIVEC-HR randomized clinical trial. World J Urol. 2022;40(4):999–1004. doi:10.1007/s00345-022-03928-1.
  • Tan WS, Prendergast A, Ackerman C, et al. Adjuvant intravesical chemohyperthermia versus passive chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer (HIVEC-II): a phase 2, open-label, randomised controlled trial. Eur Urol. 2023;83(6):497–504. doi:10.1016/j.eururo.2022.08.003.
  • van der Heijden AG, Jansen CFJ, Verhaegh G, et al. The effect of hyperthermia on mitomycin-C induced cytotoxicity in four human bladder cancer cell lines. Eur Urol. 2004;46(5):670–674. doi:10.1016/j.eururo.2004.06.009.
  • Medle B, Sjödahl G, Eriksson P, et al. Patient-derived bladder cancer organoid models in tumor biology and drug testing: a systematic review. Cancers (Basel). 2022;14(9):2062. doi:10.3390/cancers14092062.
  • Sun G, Ding B, Wan M, et al. Formation and optimization of three-dimensional organoids generated from urine-derived stem cells for renal function in vitro. Stem Cell Res Ther. 2020;11(1):309. doi:10.1186/s13287-020-01822-4.
  • Whyard T, Liu J, Darras FS, et al. Organoid model of urothelial cancer: establishment and applications for bladder cancer research. Biotechniques. 2020;69(3):193–199. doi:10.2144/btn-2020-0068.
  • Amaral RLF, Miranda M, Marcato PD, et al. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front Physiol. 2017;8:605. doi:10.3389/fphys.2017.00605.
  • Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515–528.e17. doi:10.1016/j.cell.2018.03.017.
  • Roelants M, Van Cleynenbreugel B, Van Poppel H, et al. Use of fluorescein isothiocyanate-human serum albumin for the intravesical photodiagnosis of non-muscle-invasive bladder cancer: an in vitro study using multicellular spheroids composed of normal human urothelial and urothelial cell carcinoma cell lines. BJU Int. 2011;108(3):455–459. doi:10.1111/j.1464-410X.2010.09951.x.
  • Palmer S, Litvinova K, Dunaev A, et al. Changes in autofluorescence based organoid model of muscle invasive urinary bladder cancer. Biomed Opt Express. 2016;7(4):1193–1200. doi:10.1364/BOE.7.001193.
  • Ringuette Goulet C, Bernard G, Chabaud S, et al. Tissue-engineered human 3D model of bladder cancer for invasion study and drug discovery. Biomaterials. 2017;145:233–241. doi:10.1016/j.biomaterials.2017.08.041.
  • Ezeabikwa B, Mondal N, Antonopoulos A, et al. Major differences in glycosylation and fucosyltransferase expression in low-grade versus high-grade bladder cancer cell lines. Glycobiology. 2021;31(11):1444–1463. doi:10.1093/glycob/cwab083.
  • Dekkers JF, van Vliet EJ, Sachs N, et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat Protoc. 2021;16(4):1936–1965. doi:10.1038/s41596-020-00474-1.
  • Ubink I, Bolhaqueiro ACF, Elias SG, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br J Surg. 2019;106(10):1404–1414. doi:10.1002/bjs.11206.
  • Minoli M, Cantore T, Hanhart D, et al. Bladder cancer organoids as a functional system to model different disease stages and therapy response. Nat Commun. 2023;14(1):2214. doi:10.1038/s41467-023-37696-2.
  • Kim YS, Hsieh AC, Lam HM. Bladder cancer patient-derived organoids and avatars for personalized cancer discovery. Eur Urol Focus. 2022;8(3):657–659. doi:10.1016/j.euf.2022.07.006.
  • Mullenders J, de Jongh E, Brousali A, et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci U S A. 2019;116(10):4567–4574. doi:10.1073/pnas.1803595116.
  • Owusu RA, Abern MR, Inman BA. Hyperthermia as adjunct to intravesical chemotherapy for bladder cancer. Biomed Res Int. 2013;2013:262313–262317. doi:10.1155/2013/262313.
  • Tan WS, Kelly JD. Intravesical device-assisted therapies for non-muscle-invasive bladder cancer. Nat Rev Urol. 2018;15(11):667–685. doi:10.1038/s41585-018-0092-z.
  • Conroy S, Pang K, Jubber I, et al. Hyperthermic intravesical chemotherapy with mitomycin-C for the treatment of high-risk non-muscle-invasive bladder cancer patients. BJUI Compass. 2023;4(3):314–321. doi:10.1002/bco2.203.
  • Wan J, Wu W. Hyperthermia induced HIF-1a expression of lung cancer through AKT and ERK signaling pathways. J Exp Clin Cancer Res. 2016;35(1):119. doi:10.1186/s13046-016-0399-7.
  • Zhang J-F, Yan X-M, Lan B, et al. Molecular mechanisms of synergistic induction of apoptosis by the combination therapy with hyperthermia and cisplatin in prostate cancer cells. Biochem Biophys Res Commun. 2016;479(2):159–165. doi:10.1016/j.bbrc.2016.08.060.
  • Zhao Y-Y, Wu Q, Wu Z-B, et al. Microwave hyperthermia promotes caspase‑3-dependent apoptosis and induces G2/M checkpoint arrest via the ATM pathway in non‑small cell lung cancer cells. Int J Oncol. 2018;53(2):539–550. doi:10.3892/ijo.2018.4439.
  • Abolhasani Zadeh F, AkbariRad M, Lian H, et al. Cellular and molecular mechanism of cell proliferation in human gastric cancer drug-Resistant cells after hyperthermia and cisplatin: role of mRNAs and Long-Non-coding RNAs. Turk J Gastroenterol. 2022;33(5):377–386. doi:10.5152/tjg.2022.20845.
  • Qin D-Z, Cai H, He C, et al. Melatonin relieves heat-induced spermatocyte apoptosis in mouse testes by inhibition of ATF6 and PERK signaling pathways. Zool Res. 2021;42(4):514–524. doi:10.24272/j.issn.2095-8137.2021.041.