360
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deregulated JNK signaling enhances apoptosis during hyperthermia

, , , , , , & show all
Article: 2335199 | Received 20 Dec 2023, Accepted 22 Mar 2024, Published online: 02 Apr 2024

References

  • Roti Roti JL. Cellular responses to hyperthermia (40–46 °C): cell killing and molecular events. Int J Hyperthermia. 2008;24(1):1–10. doi:10.1080/02656730701769841.
  • Hou CH, Lin FL, Hou SM, et al. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int J Mol Sci. 2014;15(10):17380–17395. doi:10.3390/ijms151017380.
  • Ahmed K, Zaidi SF, Mati-Ur-Rehman MR et al. Hyperthermia and protein homeostasis: cytoprotection and cell death. J Therm Biol 2020;91:102615. doi:10.1016/j.jtherbio.2020.102615.
  • Luo GJ, Sun X, Hasselgren PO. Hyperthermia stimulates energy-proteasome-dependent protein degradation in cultured myotubes. Am J Physiol Regul Integr Comp Physiol. 2000;278(3):R749–R756. doi:10.1152/ajpregu.2000.278.3.R749.
  • Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005;6(1):79–87. doi:10.1038/nrm1552.
  • Enomoto A, Fukasawa T. The role of calcium-calpain pathway in hyperthermia. Front. Mol. Med. 2022;2:1005258. doi:10.3389/fmmed.2022.1005258.
  • Enomoto A, Fukasawa T, Terunuma H, et al. Decrease in MAP3Ks expression enhances the cell death caused by hyperthermia. Int J Hyperthermia. 2022;39(1):200–208. doi:10.1080/02656736.2021.2024281.
  • van den Tempel N, Odijk H, van Holthe N, et al. Heat-induced BRCA2 degradation in human tumours provides rationale for hyperthermia-PARP-inhibitor combination therapies. Int J Hyperthermia. 2018;34(4):407–414. doi:10.1080/02656736.2017.1355487.
  • Chang L, Karin M. Mammalian MAP kinase signalling Cascades. Nature. 2001;410(6824):37–40. doi:10.1038/35065000.
  • Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem. 1995;270(25):14843–14846. doi:10.1074/jbc.270.25.14843.
  • Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–185. doi:10.1016/0092-8674(95)90401-8.
  • Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239–252. doi:10.1016/s0092-8674(00)00116-1.
  • Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–869. doi:10.1152/physrev.2001.81.2.807.
  • Zeke A, Misheva M, Reményi A, et al. JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 2016;80(3):793–835. doi:10.1128/MMBR.00043-14.
  • Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17(9):2596–2606. doi:10.1093/emboj/17.9.2596.
  • Teramoto H, Coso OA, Miyata H, et al. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem. 1996;271(44):27225–27228. doi:10.1074/jbc.271.44.27225.
  • Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science. 1995;270(5244):2008–2011. doi:10.1126/science.270.5244.2008.
  • Nitta RT, Chu AH, Wong AJ. Constitutive activity of JNK2 alpha2 is dependent on a unique mechanism of MAPK activation. J Biol Chem. 2008;283(50):34935–34945. doi:10.1074/jbc.M804970200.
  • Ha J, Kang E, Seo J, et al. Phosphorylation dynamics of JNK signaling: effects of Dual-Specificity Phosphatases (DUSPs) on the JNK pathway. Int J Mol Sci. 2019;20(24):6157. doi:10.3390/ijms20246157.
  • Kondoh K, Nishida E. Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta. 2007;1773(8):1227–1237. doi:10.1016/j.bbamcr.2006.12.002.
  • Palacios C, Collins MK, Perkins GR. The JNK phosphatase M3/6 is inhibited by protein-damaging stress. Curr Biol. 2001;11(18):1439–1443. doi:10.1016/s0960-9822(01)00426-2.
  • Katagiri C, Masuda K, Urano T, et al. Phosphorylation of Ser-446 determines stability of MKP-7. J Biol Chem. 2005;280(15):14716–14722. doi:10.1074/jbc.M500200200.
  • Chen HF, Chuang HC, Tan TH. Regulation of Dual-Specificity Phosphatase (DUSP) ubiquitination and protein stability. Int J Mol Sci. 2019;20(11):2668. doi:10.3390/ijms20112668.
  • Masuda K, Shima H, Watanabe M, et al. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem. 2001;276(42):39002–39011. doi:10.1074/jbc.M104600200.
  • Low HB, Wong ZL, Wu B, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12(1):2284. doi:10.1038/s41467-021-22638-7.
  • Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27(48):6245–6251. doi:10.1038/onc.2008.301.
  • Sackenheim MM. Radio frequency ablation: the key to cancer treatment. J Diagn Med Sonogr. 2003;19(2):88–92. doi:10.1177/8756479303251097.
  • Wust P, Kortüm B, Strauss U, et al. Non-thermal effects of radiofrequency electromagnetic fields. Sci Rep. 2020;10(1):13488. doi:10.1038/s41598-020-69561-3.
  • Meriin AB, Yaglom JA, Gabai VL, et al. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol Cell Biol. 1999;19(4):2547–2555. doi:10.1128/MCB.19.4.2547.
  • Yang CY, Li JP, Chiu LL, et al. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J Immunol. 2014;192(4):1547–1557. doi:10.4049/jimmunol.1300989.
  • Craig EA, Stevens MV, Vaillancourt RR, et al. MAP3Ks as Central regulators of cell fate during development. Dev Dyn. 2008;237(11):3102–3114. doi:10.1002/dvdy.21750.
  • Avdi NJ, Malcolm KC, Nick JA, et al. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH2-terminal kinase pathway in human neutrophils. J Biol Chem. 2002;277(43):40687–40696. doi:10.1074/jbc.M204455200.
  • Takekawa M, Maeda T, Saito H. Protein phosphatase 2Cα inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 1998;17(16):4744–4752. doi:10.1093/emboj/17.16.4744.