145
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design of liquid crystal-aqueous interface for detection of calcium ions using protein as recognition probe

, , , &
Pages 1-9 | Received 24 Jun 2023, Accepted 29 Sep 2023, Published online: 03 Nov 2023

References

  • Popov N, Honaker LW, Popova M, et al. Thermotropic liquid crystal-assisted chemical and biological sensors. Materials. 2018;11:20. doi: 10.3390/ma11010020
  • Carlton RJ, Hunter JT, Miller DS, et al. Chemical and biological sensing using liquid crystals. Liq Cryst Rev. 2013;1(1):29. doi: 10.1080/21680396.2013.769310
  • Devi M, Verma I, Pal SK. Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface. Analyst. 2021;146:7152–7159. doi: 10.1039/D1AN01444G
  • Miller DS, Carlton RJ, Mushenheim PC, et al. Introduction to optical methods for characterizing liquid crystals at interfaces. Langmuir. 2013;29(10):3154–3169. doi: 10.1021/la304679f
  • Pani I, Sharma D, Pal SK. Liquid crystals as sensitive reporters of lipid-protein interactions. Gen Chem. 2018;4:180012. doi: 10.21127/yaoyigc20180012
  • Lockwood NA, Gupta JK, Abbott NL. Self-assembly of amphiphiles, polymers, and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surf Sci Rep. 2008;63:255–293. doi: 10.1016/j.surfrep.2008.02.002
  • Pani I, Swasthi HM, Mukhopadhyay S, et al. Design of aqueous-liquid crystal interfaces to monitor protein aggregation at nanomolar concentrations. J Phys Chem C. 2019;123:1305–1312. doi: 10.1021/acs.jpcc.8b10863
  • Gupta VK, Skaife JJ, Dubrovsky TB, et al. Optical amplification of ligand-receptor binding using liquid crystals. Science. 1998;279(5359):2077. doi: 10.1126/science.279.5359.2077
  • Brake JM, Mezera AD, Abbott NL. Effect of surfactant structure on the orientation of liquid crystals at aqueous−liquid crystal interfaces. Langmuir. 2003;19(16):6436. doi: 10.1021/la034132s
  • Lockwood NA, Pablo JJD, Abbott NL. Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous−liquid crystal interfaces. Langmuir. 2005;21(15):6805–6814. doi: 10.1021/la050231p
  • Devi M, Pani I, Pal SK. Liquid crystals as signal transducers for sensing of analytes using aptamer as recognition probe. Liq Cryst Rev. 2022;9:65. doi: 10.1080/21680396.2022.2053597
  • de Tercero MD, Abbott NL. Ordering transitions in liquid crystals permit imaging of spatial and temporal patterns formed by proteins penetrating into lipid-laden interfaces. Chem Eng Commun. 2008;196:234. doi: 10.1080/00986440802290060
  • Verma I, Devi M, Sharma D, et al. Liquid crystal-based detection of Pb (II) ions using spinach RNA as recognition probe. Langmuir. 2019;35:7816. doi: 10.1021/acs.langmuir.8b04018
  • Khan M, Khan AR, Shin JH, et al. A liquid crystal-based DNA biosensor for pathogen detection. Sci Rep. 2016;6:22676. doi: 10.1038/srep22676
  • Pani I, Sil S, Pal SK. Liquid crystal biosensors: a new therapeutic window to point-of-care diagnostics. Langmuir. 2023;39(3):909. doi: 10.1021/acs.langmuir.2c02959
  • Wang X, Yang P, Mondiot F, et al. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides. Chem Commun. 2015;51(94):16844. doi: 10.1039/C5CC06996C
  • Bao P, Paterson DA, Harrison PL, et al. Lipid-coated liquid crystal droplets for the on-chip detection of antimicrobial peptides. Lab Chip. 2019;19:1082–1089. doi: 10.1039/C8LC01291A
  • Brake JM, Daschner MK, Abbott NL. Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals. Langmuir. 2005;21(6):2218–2228. doi: 10.1021/la0482397
  • Yang S, Wu C, Tan H, et al. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal Chem. 2013;85(1):14–18. doi: 10.1021/ac302989h
  • Pani I, Madhu P, Najiya N, et al. Differentiating conformationally distinct Alzheimer’s amyloidβ oligomers using liquid crystals. J Phys Chem Lett. 2020;11:9012–9018. doi: 10.1021/acs.jpclett.0c01867
  • Brake JM, Daschner MK, Luk YY, et al. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science. 2003;302(5653):2094–2097. doi: 10.1126/science.1091749
  • Devi M, A K, Pani I, et al. Label-free detection of ochratoxin A using aptamer as recognition probe at the liquid crystal-aqueous interface. Front Soft Matter. 2022;2:835057. doi: 10.3389/frsfm.2022.835057
  • Nandi R, Pal SK. Liquid crystal-based sensing device using a smartphone. Analyst. 2018;143:1046. doi: 10.1039/C7AN01987D
  • Sivakumar S, Wark KL, Gupta JK, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater. 2009;19(14):2260–2265. doi: 10.1002/adfm.200900399
  • Sutarlie L, Lim JY, Yang KL. Cholesteric liquid crystals doped with dodecylamine for detecting aldehyde vapors. Anal Chem. 2011;83(13):5253–5258. doi: 10.1021/ac200589k
  • Settimo L, Donnini S, Juffer AH, et al. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Biopol (Peptide Science). 2007;88:373–385. doi: 10.1002/bip.20657
  • Jurado LA, Chockalingam PS, Jarrett HW. Apocalmodulin. Physiol Rev. 1999;79(661):682. doi: 10.1152/physrev.1999.79.3.661
  • Lia W, Wanga W, Takadab S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc Natl Acad Sci USA. 2014;111(29):10550–10555. doi: 10.1073/pnas.1402768111
  • Kuboniwa H, Tjandra N, Grzesiek S, et al. Solution structure of calcium-free calmodulin. Nat Struct Mol Biol. 1995;2(9):768–776. doi: 10.1038/nsb0995-768
  • Jensen HH, Brohus M, Nyegaard M, et al. Human calmodulin mutations. Front Mol Sci. 2018;11:396. doi: 10.3389/fnmol.2018.00396
  • Bryan EF, Sture F. The evolving model of calmodulin structure, function and activation. Structure. 1995;3:7–11. doi: 10.1016/S0969-2126(01)00130-7
  • Chattopadhyaya R, Meador WE, Means AR, et al. Calmodulin structure refined at 1.7 a resolution. J Mol Biol. 1992;228:1177–1192. doi: 10.1016/0022-2836(92)90324-D
  • LaPorte DC, Wierman BM, Storm DR. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980;19(16):3814–3819. doi: 10.1021/bi00557a025
  • Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science. 1993;262(5140):1718–1721. doi: 10.1126/science.8259515
  • Kretsinger RH. The linker of calmodulin - to helix or not to helix. Cell Calcium. 1992;13:363–376. doi: 10.1016/0143-4160(92)90050-3
  • Linse S, Helmersson A, Forsen S. Calcium binding to calmodulin and its globular domains. J Biol Chem. 1991;266(13):8050–8054. doi: 10.1016/S0021-9258(18)92938-8
  • Søndergaard MT, Sorensen AB, Skov LL, et al. Calmodulin mutations causing catecholaminergic polymorphic ventricular tachycardia confer opposing functional and biophysical molecular changes. FEBS J. 2015;282(4):803–816. doi: 10.1111/febs.13184
  • Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. FEBS J. 2013;280(21):5551–5565. doi: 10.1111/febs.12296
  • Takao K, Okamoto KI, Nakagawa T, et al. Visualization of synaptic Ca2+/calmodulin-dependent protein kinase II activity in living neurons. J Neurosci. 2005;25(12):3107–3112. doi: 10.1523/JNEUROSCI.0085-05.2005
  • Johnson CK. Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Biochemistry. 2006;45(48):14233–14246. doi: 10.1021/bi061058e
  • Li L, Lai M, Cole S, et al. Neurogranin stimulates Ca2+/calmodulin-dependent kinase II by suppressing calcineurin activity at specific calcium spike frequencies. PLoS Comput Biol. 2020;16(2):1006991. doi: 10.1371/journal.pcbi.1006991
  • Fischer R, Koller M, Flura M, et al. Multiple divergent mRnas code for a single human calmodulin. J Biol Chem. 1988;263(32):17055–17062. doi: 10.1016/S0021-9258(18)37497-0
  • Guo T, Fruen BR, Nitu FR, et al. FRET detection of calmodulin binding to the cardiac RyR2 calcium release channel. Biophys J. 2011;101(9):2170–2177. doi: 10.1016/j.bpj.2011.09.030
  • Price ES, Aleksiejew M, Johnson CK. FRET-FCS detection of intra lobe dynamics in calmodulin. J Phys Chem B. 2011;115(29):9320–9326. doi: 10.1021/jp203743m
  • Geng P, Fu Y, Yang M, et al. Amplified electrochemical immunosensor for calmodulin detection based on gold-silver-graphene hybrid nanomaterials and enhanced gold nanorods labels. Electroanalysis. 2014;26(9):2002–2009. doi: 10.1002/elan.201400220
  • Pang S. A novel colorimetric assay for calcium ion and calmodulin detection based on gold nanoparticles. Inorg Nano-Met Chem. 2021;51:673–682. doi: 10.1080/24701556.2020.1802753
  • Papish AL, Tari LW, Vogel HJ. Dynamic light scattering study of calmodulin-target peptide complexes. Biophys J. 2002;83(3):1455–1464. doi: 10.1016/S0006-3495(02)73916-7
  • Leekumjorn S, Sum AK. Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers. J Phys Chem B. 2007;111(21):6026–6033. doi: 10.1021/jp0686339
  • Janosi L, Gorfe AA. Simulating POPC and POPC/POPG bilayers: conserved packing and altered surface reactivity. J Chem Theory Comput. 2010;6(10):3267–3273. doi: 10.1021/ct100381g
  • Shah RR, Abbott NL. Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science. 2001;293(5533):1296–1299. doi: 10.1126/science.1062293
  • Kozisek F. Regulations for calcium magnesium or hardness in drinking water in the European Union member states. Regul Toxicol Pharmacol. 2020;112:104589. doi: 10.1016/j.yrtph.2020.104589
  • Akyilmaz E, Kozgus O. Determination of calcium in milk and water samples by using catalase enzyme electrode. Food Chem. 2009;115(1):347–351. doi: 10.1016/j.foodchem.2008.11.075
  • Johns VK, Patel PK, Hassett S, et al. Visible light activated ion sensing using a photoacid polymer for calcium detection. Anal Chem. 2014;13:6184–6187. doi: 10.1021/ac500956j
  • Kim S, Park JW, Kim D, et al. Bioinspired colorimetric detection of calcium (II) ions in serum using calsequestrin-functionalized gold nanoparticles. Angew Chem Int Ed Engl. 2009;48(23):4138–4141. doi: 10.1002/anie.200900071
  • Sui B, Liu X, Wang M, et al. A highly selective fluorescence turn-on sensor for extracellular calcium ion detection. Chem Eur J. 2016;22(30):10351–10354. doi: 10.1002/chem.201602162

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.