201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reaction-induced liquid crystalline polybenzoxazine thermosets using aryl ester bonds as cross-linkages

, , , , , & show all
Pages 33-43 | Received 17 Aug 2023, Accepted 16 Oct 2023, Published online: 26 Oct 2023

References

  • Wang Y, Wu W, Drummer D, et al. Improvement of thermal conductivity and mechanical properties for polybenzoxazine composites via incorporation of epoxy resin and segregated structure. Mater Res Express. 2020;7(9):095301. doi: 10.1088/2053-1591/abb263
  • Yoshihara S, Tokita M, Ezaki T, et al. Main‐chain smectic liquid crystalline polymer exhibiting unusually high thermal conductivity in an isotropic composite. J Appl Polym Sci. 2014;131(6). doi: 10.1002/app.39896
  • Kizilel R, Sabbah R, Selman JR, et al. An alternative cooling system to enhance the safety of li-ion battery packs. J Power Sources. 2009;194(2):1105–1112. doi: 10.1016/j.jpowsour.2009.06.074
  • Zhang J, Mi X, Chen S, et al. Toughening benzoxazine/epoxy thermosets through control of interfacial interactions and morphologies by hyperbranched polymeric ionic liquids. J Mol Liq. 2019;291:111251. doi: 10.1016/j.molliq.2019.111251
  • Yu A, Ramesh P, Sun X, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater. 2008;20(24):4740–4744. doi: 10.1002/adma.200800401
  • Kusy RP, Turner DT. Electrical conductivity of a polyurethane elastomer containing segregated particles of nickel. J Appl Polym Sci. 1973;17:1631–1633. doi: 10.1002/app.1973.070170528
  • Hammerschmidt A, Geibel K, Strohmer F. In situ photopolymerized, oriented liquid‐crystalline diacrylates with high thermal conductivities. Adv Mater. 1993;5(2):107–109. doi: 10.1002/adma.19930050206
  • Kawamoto S, Fujiwara H, Nishimura S. Hydrogen characteristics and ordered structure of mono-mesogen type liquid-crystalline epoxy polymer. Int J Hydrogen Energy. 2016;41(18):7500–7510. doi: 10.1016/j.ijhydene.2016.03.124
  • Li Y, Zhang Y, Goswami M, et al. Liquid crystalline networks based on photo-initiated thiol–ene click chemistry. Soft Matter. 2020;16(7):1760–1770. doi: 10.1039/C9SM01818B
  • Ishida H, Allen DJ. Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer. 1996;37(20):4487–4495. doi: 10.1016/0032-3861(96)00303-5
  • Chernykh A, Liu J, Ishida H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer. 2006;47(22):7664–7669. doi: 10.1016/j.polymer.2006.08.041
  • Kasemsiri P, Hiziroglu S, Rimdusit S. Effect of cashew nut shell liquid on gelation, cure kinetics, and thermomechanical properties of benzoxazine resin. Thermochim Acta. 2011;520(1–2):84–92. doi: 10.1016/j.tca.2011.03.020
  • Wang Z, Zhang S, Lu Z. Sulfonic acid-containing benzoxazine surfactant and its waterborne benzoxazine resins. Eur Polym J. 2020;141:110086. doi: 10.1016/j.eurpolymj.2020.110086
  • Liu J, Agag T, Ishida H. Main-chain benzoxazine oligomers: a new approach for resin transfer moldable neat benzoxazines for high performance applications. Polymer. 2010;51(24):5688–5694. doi: 10.1016/j.polymer.2010.08.059
  • Rimdusit S, Ishida H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer. 2000;41(22):7941–7949. doi: 10.1016/S0032-3861(00)00164-6
  • Mora P, Schäfer H, Jubsilp C, et al. Thermosetting shape memory polymers and composites based on polybenzoxazine blends, alloys and copolymers. Chem Asian J. 2019;14(23):4129–4139. doi: 10.1002/asia.201900969
  • Chen CH, Lin CH, Wong TI, et al. Thermosets derived from diallyl-containing main-chain type benzoxazine polymers. Polymer. 2018;149:286–293. doi: 10.1016/j.polymer.2018.07.002
  • Takeichi T, Kano T, Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer. 2005;46(26):12172–12180. doi: 10.1016/j.polymer.2005.10.088
  • Velez‐Herrera P, Ishida H. Low temperature polymerization of novel, monotropic liquid crystalline benzoxazines. J Polym Sci A Polym Chem. 2009;47(21):5871–5881. doi: 10.1002/pola.23632
  • Kawauchi T, Murai Y, Hashimoto K, et al. Synthesis and polymerization behavior of novel liquid-crystalline benzoxazines. Polymer. 2011;52(10):2150–2156. doi: 10.1016/j.polymer.2011.03.042
  • Ito M, Kawauchi T, Sakajiri K, et al. Synthesis of liquid–crystalline benzoxazines containing a biphenyl group in the mesogenic moiety. React Funct Polym. 2013;73(9):1223–1230. doi: 10.1016/j.reactfunctpolym.2013.06.005
  • Liu Y, Gao S, Gong X, et al. Benzoxazine-epoxy thermosets with smectic phase structures for high thermal conductive materials. Liq Cryst. 2019;46(11):1686–1695. doi: 10.1080/02678292.2019.1595755
  • Liu Y, Chen J, Zhang Y, et al. Highly thermal conductive benzoxazine-epoxy interpenetrating polymer networks containing liquid crystalline structures. J Polym Sci B Polym Phys. 2017;55:1813–1821. doi: 10.1002/polb.24414
  • Liu Y, Chen J, Qi Y, et al. Cross-linked liquid crystalline polybenzoxazines bearing cholesterol-based mesogen side groups. Polymer. 2018;145:252–260. doi: 10.1016/j.polymer.2018.05.004
  • Liu Y, Zhen X, Gao S, et al. Studies on the mesophase formation mechanism of polybenzoxazines: polymerization induction. Liq Cryst. 2020;47:627–635. doi: 10.1080/02678292.2019.1667445
  • Han L, Iguchi D, Gil P, et al. Oxazine ring-related vibrational modes of benzoxazine monomers using fully aromatically substituted, deuterated, 15N isotope exchanged, and oxazine-ring-substituted compounds and theoretical calculations. J Phys Chem A. 2017;121(33):6269–6282. doi: 10.1021/acs.jpca.7b05249
  • Kawaguchi AW, Sudo A, Endo T. Thiol‐functionalized 1, 3‐benzoxazine: preparation and its use as a precursor for highly polymerizable benzoxazine monomers bearing sulfide moiety. J Polym Sci A Polym Chem. 2014;52:1448–1457. doi: 10.1002/pola.27131
  • Ishida H, Kisanuki A, Endo K. Ring-opening polymerization of aromatic 6-membered cyclic disulfide and characterization of the polymer. Polym J. 2009;41:110–117. doi: 10.1295/polymj.PJ2008219
  • Song C, Qi Y, Deng T, et al. Kinetic model for the esterification of oleic acid catalyzed by zinc acetate in subcritical methanol. Renewable Energy. 2010;35(3):625–628. doi: 10.1016/j.renene.2009.08.004
  • Rouif S. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, electrotechnic and electronics. Radiat Phys Chem. 2004;71(1–2):527–530. doi: 10.1016/j.radphyschem.2004.03.050
  • Mahfud R, Agag T, Ishida H, et al. Synthesis and evaluation of novel anionic polymeric surfactants based on polybenzoxazines. J Colloid Interface Sci. 2013;407:339–347. doi: 10.1016/j.jcis.2013.06.042
  • Nagaraj P, Sasidharan A, David V, et al. Effect of cross-linking on the performances of starch-based biopolymer as gel electrolyte for dye-sensitized solar cell applications. Polymers. 2017;9(12):667. doi: 10.3390/polym9120667
  • Gao S, Liu Y, Feng S, et al. Reprocessable and degradable thermoset with high: T g cross-linked via Si-O-Ph bonds. J Mater Chem A Mater. 2019;7:17498–17504. doi: 10.1039/C9TA04951G
  • Stark RE, Zlotnik-Mazori T, Ferrantello LM, et al. Molecular structure and dynamics of intact plant polyesters solid-state NMR studies. n.d.
  • Wöhrle T, Baro A, Laschat S. Novel discotic boroxines: synthesis and mesomorphic properties. Materials. 2014;7(5):4045–4056. doi: 10.3390/ma7054045
  • Roberts JC, Kapernaum N, Song Q, et al. Design of liquid crystals with “de Vries-like” properties: frustration between SmA-and SmC-promoting elements. J Am Chem Soc. 2010;132:364–370. doi: 10.1021/ja9087727
  • Houben SJA, Van Merwijk SA, Langers BJH, et al. Smectic liquid crystalline polymer membranes with aligned nanopores in an anisotropic scaffold. ACS Appl Mater Interfaces. 2021;13(6):7592–7599. doi: 10.1021/acsami.0c20898
  • Blumstein A, Osada Y, Clough SB, et al. Liquid crystalline order in polymers and copolymers with cholesteric side groups. ACS Publications; 1978. p. 56–70 doi: 10.1021/bk-1978-0074.ch005
  • Liu X, Zhang R, Li T, et al. Novel fully biobased benzoxazines from rosin: synthesis and properties. ACS Sustain Chem Eng. 2017;5(11):10682–10692. doi: 10.1021/acssuschemeng.7b02650

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.