429
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predicting the melting point of liquid crystals with directed message passing neural networks

, , &
Pages 78-92 | Received 13 Aug 2023, Accepted 22 Oct 2023, Published online: 03 Nov 2023

References

  • Bisoyi HK, Li Q. Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chem Rev. 2022;122(5):4887–4926. doi: 10.1021/acs.chemrev.1c00761
  • Reinitzer F. Wiener Monatschrift fur Chemie. 1888;9:435. doi: 10.1007/BF01516710
  • Liqcryst 4.3. Database of liquid crystalline compounds. 2003. http://liqcryst.chemie.uni-hamburg.de/.
  • Kelly SM, O’Neill M. Chapter 1 - liquid crystals for electro-optic applications. In: Singh Nalwa H, editor. Handbook of advanced electronic and photonic materials and devices. Burlington: Academic Press; 2001. pp. 1–66.
  • Kelker HC, Hatz R, Schumann C. Handbook of liquid crystals. Weinheim: Wiley-VCH; 1980.
  • Chigrinov VG. Liquid crystal devices: physics and applications. Boston: Artech House; 1999.
  • Huang Y, Hsiang E-L, Deng M-Y, et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Sci Appl. 2020;9(1):105. doi: 10.1038/s41377-020-0341-9
  • Hsiang E-L, Yang Z, Yang Q, et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J Soc Inf Disp. 2021;29(6):446–465. doi: 10.1002/jsid.1058
  • Shanker G, Kumar KRS, Paul B. Perspective on structure-property relationship of room temperature single-component liquid crystals. Liq Cryst. 2022;49(12):1545–1603. doi: 10.1080/02678292.2022.2102683
  • Hudson SA, Maitlis PM. Calamitic metallomesogens: metal-containing liquid crystals with rodlike shapes. Chem Rev. 1993;93(3):861–885. doi: 10.1021/cr00019a002
  • Seredyuk M, Gaspar AB, Ksenofontov V, et al. Room temperature operational thermochromic liquid crystals. Chem Mater. 2006;18(10):2513–2519. doi: 10.1021/cm052632w
  • Lemieux RP. Chirality Transfer in Ferroelectric Liquid Crystals. Acc Chem Res. 2001;34(11):845–853. doi: 10.1021/ar9901164
  • Wu S-T, Hsu C-S, Chuang Y-Y. Room Temperature Bis-tolane Liquid Crystals. Jpn J Appl Phys. 1999;38(3B):L286–L288. doi: 10.1143/JJAP.38.L286
  • Fouad F, Khairuddean M, Twieg R. Synthesis and liquid crystalline studies of biphenylyl-1,3,4-thiadiazoles and diphenyl-1,3,4-thiadiazoles: influence of side chain semifluorination and lateral ring fluorination. Liq Cryst. 2021;48(12):1758–1768. doi: 10.1080/02678292.2021.1900432
  • Liquid crystals: applications and uses: World Scientific; 1990.
  • Wang K, Jirka M, Rai P, et al. Synthesis and properties of hydroxy tail-terminated cyanobiphenyl liquid crystals. Liq Cryst. 2019;46(3):397–407. doi: 10.1080/02678292.2018.1502373
  • Su X, Voskian S, Hughes RP, et al. Manipulating liquid-crystal properties using a pH activated hydrazone switch. Angew Chem Int Ed. 2013;52(41):10734–10739. doi: 10.1002/anie.201305514
  • Geng Y, Lagerwall JPF. Multiresponsive cylindrically symmetric cholesteric liquid crystal elastomer fibers templated by tubular confinement. Adv Sci. 2023;10(19):2301414. doi: 10.1002/advs.202301414
  • Kurylo I, van der Tol J, Colonnese N, et al. Photo-responsive liquid crystal network-based material with adaptive modulus for haptic application. Sci Rep. 2022;12(1):19512. doi: 10.1038/s41598-022-24106-8
  • Szilvási T, Yu H, Gold JI, et al. Coupling the chemical reactivity of bimetallic surfaces to the orientations of liquid crystals. Mater Horiz. 2021;8(7):2050–2056. doi: 10.1039/D1MH00035G
  • Bao N, Gold JI, Sheavly JK, et al. Ordering transitions of liquid crystals triggered by metal oxide-catalyzed reactions of sulfur oxide species. J Am Chem Soc. 2022;144(36):16378–16388. doi: 10.1021/jacs.2c03424
  • Szilvási T, Bao N, Nayani K, et al. Redox-Triggered Orientational Responses of Liquid Crystals to Chlorine Gas. Angew Chem Int Ed. 2018;57(31):9665–9669. doi: 10.1002/anie.201803194
  • Saha R, Nepal P, Feng C, et al. Multiple ferroelectric nematic phases of a highly polar liquid crystal compound. Liq Cryst. 2022;49(13):1784–1796. doi: 10.1080/02678292.2022.2069297
  • Xiong D, Xiong X, Chen Z, et al. Mesophase behaviour of 1,2,3-triazole-based nematic liquid crystals influenced by varying alkyl chains and halogen atom substitution. Liq Cryst. 2022;49(10):1261–1274. doi: 10.1080/02678292.2022.2066731
  • Yu H, Szilvási T, Rai P, et al. Computational chemistry-guided design of selective chemoresponsive liquid crystals using pyridine and pyrimidine functional groups. Adv Funct Mater. 2018;28(13):1703581. doi: 10.1002/adfm.201703581
  • Gold J, Szilvási T, Abbott NL, et al. Binding of organophosphorus nerve agents and their simulants to metal salts. ACS Appl Mater Interfaces. 2020;12(27):30941–30953. doi: 10.1021/acsami.0c05777
  • Yu H, Szilvási T, Wang K, et al. Amplification of elementary surface reaction steps on transition metal surfaces using liquid crystals: dissociative adsorption and dehydrogenation. J Am Chem Soc. 2019;141(40):16003–16013. doi: 10.1021/jacs.9b08057
  • Szilvási T, Bao N, Yu H, et al. The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites. Soft Matter. 2018;14(5):797–805. doi: 10.1039/C7SM01981E
  • Martínez-González JA, Li X, Sadati M, et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat Commun. 2017;8(1):15854. doi: 10.1038/ncomms15854
  • Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Liquid crystal free energy relaxation by a theoretically informed monte carlo method using a finite element quadrature approach. J Chem Phys. 2015;143(24):243157. doi: 10.1063/1.4937628
  • Bagchi K, Emeršič T, Martínez-González JA, et al. Functional soft materials from blue phase liquid crystals. Sci Adv. 2023;9(30):eadh9393. doi: 10.1126/sciadv.adh9393
  • Sadati M, Ramezani-Dakhel H, Bu W, et al. Molecular structure of canonical liquid crystal Interfaces. J Am Chem Soc. 2017;139(10):3841–3850. doi: 10.1021/jacs.7b00167
  • Ramezani-Dakhel H, Sadati M, Zhang R, et al. Water Flux Induced Reorientation of Liquid Crystals. ACS Cent Sci. 2017;3(12):1345–1349. doi: 10.1021/acscentsci.7b00495
  • Ramezani-Dakhel H, Rahimi M, Pendery J, et al. Amphiphile-induced phase transition of liquid crystals at aqueous interfaces. ACS Appl Mater Interfaces. 2018;10(43):37618–37624. doi: 10.1021/acsami.8b09639
  • Szilvási T, Roling LT, Yu H, et al. Design of chemoresponsive liquid crystals through integration of computational chemistry and experimental studies. Chem Mater. 2017;29(8):3563–3571. doi: 10.1021/acs.chemmater.6b05430
  • Bao N, Gold JI, Szilvási T, et al. Designing chemically selective liquid crystalline materials that respond to oxidizing gases. J Mater Chem C. 2021;9(20):6507–6517. doi: 10.1039/D1TC00544H
  • Sheavly JK, Gold JI, Mavrikakis M, et al. Molecular simulations of analyte partitioning and diffusion in liquid crystal sensors [10.1039/C9ME00126C]. Mol Syst Des Eng. 2020;5:304–316. doi: 10.1039/C9ME00126C
  • Wang K, Szilvási T, Gold J, et al. New room temperature nematogens by cyano tail termination of alkoxy and alkylcyanobiphenyls and their anchoring behavior on metal salt-decorated surface. Liq Cryst. 2020;47(4):540–556. doi: 10.1080/02678292.2019.1662116
  • Wang K, Rahman MS, Szilvási T, et al. Influence of multifluorophenyloxy terminus on the mesomorphism of the alkoxy and alkyl cyanobiphenyl compounds in search of new ambient nematic liquid crystals and mixtures. Liq Cryst. 2021;48(5):672–688. doi: 10.1080/02678292.2020.1810792
  • Yu H, Wang K, Szilvási T, et al. Design of chemoresponsive soft matter using hydrogen-bonded liquid crystals. Materials. 2021;14(5):1055. doi: 10.3390/ma14051055
  • Wang K, Rai P, Fernando A, et al. Synthesis and properties of fluorine tail-terminated cyanobiphenyls and terphenyls for chemoresponsive liquid crystals. Liq Cryst. 2020;47(1):3–16. doi: 10.1080/02678292.2019.1616228
  • Ramezani-Dakhel H, Sadati M, Rahimi M, et al. Understanding atomic-scale behavior of liquid crystals at aqueous Interfaces. J Chem Theory Comput. 2017;13(1):237–244. doi: 10.1021/acs.jctc.6b00844
  • Armas-Pérez JC, Londono-Hurtado A, Guzmán O, et al. Theoretically informed monte carlo simulation of liquid crystals by sampling of alignment-tensor fields. J Chem Phys. 2015;143(4):044107. doi: 10.1063/1.4926790
  • Norouzi S, Zhang R, Munguia-Fernández JG, et al. Director distortion and phase modulation in deformable nematic and smectic liquid crystal spheroids. Langmuir. 2022;38(49):15272–15281. doi: 10.1021/acs.langmuir.2c02461
  • Wang X, Zhou Y, Kim Y-K, et al. Thermally reconfigurable janus droplets with nematic liquid crystalline and isotropic perfluorocarbon oil compartments. Soft Matter. 2019;15(12):2580–2590. doi: 10.1039/C8SM02600A
  • Kumar N, Zhang R, de Pablo JJ, et al. Tunable structure and dynamics of active liquid crystals. Sci Adv. 2018;4(10):eaat7779. doi: 10.1126/sciadv.aat7779
  • Boyd NJ, Wilson MR. Optimization of the GAFF force field to describe liquid crystal molecules: the path to a dramatic improvement in transition temperature predictions [10.1039/C5CP03702F]. Phys Chem Chem Phys. 2015;17:24851–24865. doi: 10.1039/C5CP03702F
  • Boyd NJ, Wilson MR. Validating an optimized GAFF force field for liquid crystals: TNI predictions for bent-core mesogens and the first atomistic predictions of a dark conglomerate phase [10.1039/C7CP07496D]. Phys Chem Chem Phys. 2018;20:1485–1496. doi: 10.1039/C7CP07496D
  • Wilson MR. Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chem Soc Rev. 2007;36(12):1881–1888. doi: 10.1039/b612799c
  • Neumann MA. Tailor-made force fields for crystal-structure prediction. J Phys Chem B. 2008;112(32):9810–9829. doi: 10.1021/jp710575h
  • Tiberio G, Muccioli L, Berardi R, et al. Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. Chemphyschem. 2009;10(1):125–136. doi: 10.1002/cphc.200800231
  • Berardi R, Muccioli L, Zannoni C. Can nematic transitions be predicted by atomistic simulations? A Computational study of the odd–even effect. Chemphyschem. 2004;5(1):104–111. doi: 10.1002/cphc.200300908
  • Olivier Y, Muccioli L, Zannoni C. Quinquephenyl: the simplest rigid-rod-like nematic liquid crystal, or is it? An atomistic simulation. Chemphyschem. 2014;15:1345–1355. doi: 10.1002/cphc.201301126
  • Tetko IV, Lowe D M, Williams AJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J Cheminform. 2016;8:2. doi: 10.1186/s13321-016-0113-y
  • Tetko IV, Sushko Y, Novotarskyi S, et al. How accurately can we predict the melting points of drug-like compounds? J Chem Inf Model. 2014;54:3320–3329. doi: 10.1021/ci5005288
  • Alshehri AS, Tula AK, You F, et al. Next generation pure component property estimation models: With and without machine learning techniques. AIChE J. 2022;68:e17469. doi: 10.1002/aic.17469
  • Mi W, Chen H, Zhu D, et al. Melting point prediction of organic molecules by deciphering the chemical structure into a natural language. Chem Comm. 2021;57(21):2633–2636. doi: 10.1039/D0CC07384A
  • Achilias DS, Giannoulis A, Papageorgiou GZ. Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polym Bull. 2009;63(3):449–465. doi: 10.1007/s00289-009-0104-5
  • Karthikeyan M, Glen RC, Bender A. General melting point prediction based on a diverse compound data set and artificial neural networks. J Chem Inf Model. 2005;45(3):581–590. doi: 10.1021/ci0500132
  • Bergström CAS, Norinder U, Luthman K, et al. Molecular descriptors influencing melting point and their role in classification of solid drugs. J Chem Inf Comput. 2003;43:1177–1185. doi: 10.1021/ci020280x
  • Paduszyński K, Kłębowski K, Królikowska M. Predicting melting point of ionic liquids using QSPR approach: literature review and new models. J Mol Liq. 2021;344:117631. doi: 10.1016/j.molliq.2021.117631
  • Ren Y, Liu H, Yao X, et al. Prediction of nematic transition temperatures in thermotropic liquid crystals by a heuristic method. Liq Cryst. 2007;34(11):1291–1297. doi: 10.1080/02678290701663712
  • Ren Y, Zhang Y, Yao X. Prediction of nematic transition temperatures of quinoline-containing liquid crystalline compounds from molecular structure. Liq Cryst. 2017;44(14–15):2337–2347. doi: 10.1080/02678292.2017.1355991
  • Antanasijević J, Pocajt V, Antanasijević D, et al. Prediction of clearing temperatures of bent-core liquid crystals using decision trees and multivariate adaptive regression splines. Liq Cryst. 2016;43(8):1028–1037. doi: 10.1080/02678292.2016.1155769
  • Xu J, Wang L, Zhang H, et al. Accurate quantitative structure–property relationship analysis for prediction of nematic transition temperatures in thermotropic liquid crystals. Mol Simul. 2010;36(1):26–34. doi: 10.1080/08927020903096064
  • Al-Fahemi JH. QSPR study on nematic transition temperatures of thermotropic liquid crystals based on DFT-calculated descriptors. Liq Cryst. 2014;41(11):1575–1582. doi: 10.1080/02678292.2014.934310
  • Sushko I, Novotarskyi S, Körner R, et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J ComputAided Mol Des. 2011;25(6):533–554. doi: 10.1007/s10822-011-9440-2
  • ONSMP. http://onswebservices.wikispaces.com/.
  • MDPI. http://www.mdpi.org/cumbase.htm.
  • EPA U.S. Environmetal Protection Agency EPI Suite v4.10. http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm.
  • ChemExper. http://www.chemexper.com.
  • Bradley J-C, Lang A, Williams A. Jean-Claude Bradley double plus good (highly curated and validated) melting point dataset. Figshare. 2014. doi: 10.6084/m9.figshare.1031638.v1
  • ENAMINE Ltd. http://www.thinksrs.com/products/MPA100.htm.
  • Antanasijević D, Antanasijević J, Pocajt V, et al. A GMDH-type neural network with multi-filter feature selection for the prediction of transition temperatures of bent-core liquid crystals. RSC Adv. 2016;6(102):99676–99684. doi: 10.1039/C6RA15056J
  • Johnson SR, Jurs PC. Prediction of the clearing temperatures of a series of liquid crystals from molecular structure. Chem Mater. 1999;11(4):1007–1023. doi: 10.1021/cm980674x
  • Yang K, Swanson K, Jin W, et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model. 2019;59(8):3370–3388. doi: 10.1021/acs.jcim.9b00237
  • Soyemi A, Szilvási T. Calculated physicochemical properties of glycerol-derived solvents to drive plastic waste recycling. Ind Eng Chem Res. 2023;62:6322–6337. doi: 10.1021/acs.iecr.2c04567
  • Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput. 1988;28:31–36. doi: 10.1021/ci00057a005
  • Yin H, Lin C, Tian Y, et al. Prediction and structure–activity relationship analysis on ready biodegradability of chemical using machine learning method. Chem Res Toxicol. 2023;36(4):617–629. doi: 10.1021/acs.chemrestox.2c00330
  • Lansford JL, Jensen KF, Barnes BC. Physics-informed transfer learning for out-of-sample vapor pressure predictions. Propellants Explos Pyrotechnics. 2023;48:e202200265. doi: 10.1002/prep.202200265
  • Lenselink EB, Stouten PFW. Multitask machine learning models for predicting lipophilicity (logP) in the SAMPL7 challenge. J ComputAided Mol Des. 2021;35(8):901–909. doi: 10.1007/s10822-021-00405-6
  • Xiang Y, Tang Y-H, Lin G, et al. A comparative study of marginalized graph kernel and message-passing neural network. J Chem Inf Model. 2021;61(11):5414–5424. doi: 10.1021/acs.jcim.1c01118
  • RDKit: Open-source cheminformatics. https://www.rdkit.org.
  • Morgan HL. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J Chem Doc. 1965;5:107–113. doi: 10.1021/c160017a018
  • Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302. doi: 10.2307/1932409
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180:688–702.e13. doi: 10.1016/j.cell.2020.01.021
  • Wu Z, Ramsundar B, Feinberg Evan N, et al. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 2018;9:513–530. doi: 10.1039/C7SC02664A
  • Heid E, Greenman KP, Chung Y, et al. Chemprop: machine learning package for chemical property prediction. ChemRxiv. 2023 July 24.
  • Hughes LD, Palmer DS, Nigsch F, et al. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. J Chem Inf Model. 2008;48:220–232. doi: 10.1021/ci700307p
  • McDonagh JL, Van mourik T, Mitchell JBO. Predicting melting points of organic molecules: applications to aqueous solubility prediction using the general solubility equation. Mol Inf. 2015;34(11–12):715–724. doi: 10.1002/minf.201500052
  • Kirsch P, Bremer M. Nematic liquid crystals for active matrix displays: molecular design and Synthesis. Angew Chem Int Ed. 2000;39(23):4216–4235. doi: 10.1002/1521-3773(20001201)39:23<4216:AID-ANIE4216>3.0.CO;2-K
  • Gray GW, Harrison KJ, Nash JA. New family of nematic liquid crystals for displays. Electron Lett. 1973;9(6):130–131. doi: 10.1049/el:19730096
  • Marjanović S. High-accuracy digital–analogue convertor. Electron Lett. 1973;9(6):131–132. doi: 10.1049/el:19730097
  • Guillamat P, Ignés-Mullol J, Sagués F. Control of active liquid crystals with a magnetic field. Proc Natl Acad Sci. 2016;113(20):5498–5502. doi: 10.1073/pnas.1600339113
  • Collins PJH, Michael. Introduction to liquid crystals. London: CRC Press; 1997.
  • Deschamps J, Trusler JPM, Jackson G. Vapor pressure and density of thermotropic liquid crystals: MBBA, 5CB, and novel fluorinated mesogens. J Phys Chem B. 2008;112(13):3918–3926. doi: 10.1021/jp711211w
  • Nakata M, Takanishi Y, Watanabe J, et al. Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules. Phys Rev E. 2003 Oct 29;68(4):041710. doi: 10.1103/PhysRevE.68.041710
  • Cordoyiannis G, Kralj S, Nounesis G, et al. Pretransitional effects near the smectic-a–smectic-C* phase transition of hydrophilic and hydrophobic aerosil networks dispersed in ferroelectric liquid crystals. Phys Rev E. 2007;75(2):021702. doi: 10.1103/PhysRevE.75.021702
  • Fernandes P, Barois P, Grelet E, et al. Extension of the resonant scattering technique to liquid crystals without resonant element. Eur Phys J E. 2006;20(1):81–87. doi: 10.1140/epje/i2006-10006-4
  • Streamlit. https://streamlit.io/
  • Python Software Foundation. https://www.python.org/
  • GitHub. https://github.com/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.