190
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Improved electro-optical properties of ferroelectric liquid crystal by incorporating alloyed quaternary ZnCuGaS2/ZnS core/shell quantum dots

, , , &
Pages 111-119 | Received 16 May 2023, Accepted 25 Oct 2023, Published online: 06 Nov 2023

References

  • Cladis P. New liquid-crystal phase diagram. Phys Rev Lett. 1975;35(1):48. doi: 10.1103/PhysRevLett.35.48
  • Hartmann WJ. Ferroelectric liquid crystal displays for television application. Ferroelectrics. 1991;122(1):1–26. doi: 10.1080/00150199108226025
  • Lagerwall ST. Ferroelectric liquid crystal displays with greyscale. Liq Cryst Today. 1996;6(2):5–7. doi: 10.1080/13583149608047641
  • Mukherjee S, Yuan Z-N, Sun Z-B, et al. Fast refocusing lens based on ferroelectric liquid crystals. Opt Express. 2021;29(6):8258–8267. doi: 10.1364/OE.417112
  • Doke S, Sonawane K, Raghavendra Reddy V, et al. Low power operated highly luminescent ferroelectric liquid crystal doped with CdSe/ZnSe core/shell quantum dots. Liq Cryst. 2018;45(10):1518–1524. doi: 10.1080/02678292.2018.1449260
  • Ganguly P, Joshi T, Singh S, et al. Electrically modulated photoluminescence in ferroelectric liquid crystal. Appl Phys Lett. 2012;101(26):262902. doi: 10.1063/1.4773366
  • Gupta SK, Budaszewski D, Singh DP. Ferroelectric liquid crystals: futuristic mesogens for photonic applications. Eur Phy J Spec Top. 2022;231:673–694. doi: 10.1140/epjs/s11734-021-00390-9
  • Kumar A, Prakash J, Khan MT, et al. Memory effect in cadmium telluride quantum dots doped ferroelectric liquid crystals. Appl Phys Lett. 2010;97(16):163113. doi: 10.1063/1.3495780
  • Prakash J, Choudhary A, Kumar A, et al. Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal. Appl Phys Lett. 2008;93(11):112904. doi: 10.1063/1.2980037
  • Joshi T, Kumar A, Prakash J, et al. Low power operation of ferroelectric liquid crystal system dispersed with zinc oxide nanoparticles. Appl Phys Lett. 2010;96(25):253109. doi: 10.1063/1.3455325
  • Pandey S, Vimal T, Singh DP, et al. Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarisation coupling with dopant. Liq Cryst. 2016;43(7):980–993. doi: 10.1080/02678292.2016.1155768
  • Bezborodov V, Mikhalyonok S, Kuz’menok N, et al. Anisotropic derivatives of (-)-L-lactic acid and their nanocomposites. Liq Cryst. 2018;45(8):1223–1233. doi: 10.1080/02678292.2018.1427809
  • Joshi T, Ganguly P, Haranath D, et al. Tuning the photoluminescence of ferroelectric liquid crystal by controlling the size of dopant ZnO quantum dots. Mater Lett. 2014;114:156–158. doi: 10.1016/j.matlet.2013.09.110
  • Kumar A, Meena H, Prakash J, et al. Recent advances on semiconducting nanomaterials–ferroelectric liquid crystals nanocomposites. J Phys Condense Matter. 2021;34(1):013004. doi: 10.1088/1361-648X/ac2ace
  • Kumar V, Kumar A, Biradar AM, et al. Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots. Liq Cryst. 2014;41(12):1719–1725. doi: 10.1080/02678292.2014.949888
  • Pandey S, Vimal T, Singh DP, et al. Cd1-xZnxS/ZnS core/shell quantum dot ferroelectric liquid crystal composite system: analysis of faster optical response and lower operating voltage. Liq Cryst. 2014;41(12):1811–1820. doi: 10.1080/02678292.2014.951005
  • Podgornov F, Wipf R, Stühn B, et al. Low-frequency relaxation modes in ferroelectric liquid crystal/gold nanoparticle dispersion: impact of nanoparticle shape. Liq Cryst. 2016;43(11):1536–1547. doi: 10.1080/02678292.2016.1186754
  • Prakash J, Chandran A, Malik A, et al. Role of cell thickness in tailoring the dielectric and electro-optical parameters of ferroelectric liquid crystals. Liq Cryst. 2015;42(12):1748–1753. doi: 10.1080/02678292.2015.1084390
  • Shukla R, Sharma A, Mori T, et al. Effect of two different size chiral ligand-capped gold nanoparticle dopants on the electro-optic and dielectric dynamics of a ferroelectric liquid crystal mixture. Liq Cryst. 2016;43(6):695–703. doi: 10.1080/02678292.2016.1140239
  • Tschierske C. Mirror symmetry breaking in liquids and liquid crystals. Liq Cryst. 2018;45(13–15):2221–2252. doi: 10.1080/02678292.2018.1501822
  • Anikeeva PO, Halpert JE, Bawendi MG, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 2009;9(7):2532–2536. doi: 10.1021/nl9002969
  • Kim TH, Cho KS, Lee EK, et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon. 2011;5(3):176–182. doi: 10.1038/nphoton.2011.12
  • Medintz IL, Uyeda HT, Goldman ER, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435–446. doi: 10.1038/nmat1390
  • Milburn G. Quantum-dot computing. Phys World. 2003;16(10):24. doi: 10.1088/2058-7058/16/10/33
  • Shirasaki Y, Supran GJ, Bawendi MG, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon. 2013;7(1):13–23. doi: 10.1038/nphoton.2012.328
  • Prasannan P, Malik P, Supreet AK, et al. Recent advances and future perspectives on nanoparticles-controlled alignment of liquid crystals for displays and other photonic devices. Crit Rev Solid Mater Sci. 2022;47:1–36.
  • Vimal T, Pandey S, Gupta SK, et al. Manifestation of strong magneto-electric dipolar coupling in ferromagnetic nanoparticles− FLC composite: evaluation of time-dependent memory effect. Liq Cryst. 2018;45(5):687–697. doi: 10.1080/02678292.2017.1375564
  • Vimal T, Pandey S, Singh D, et al. ZnS quantum dot induced phase transitional changes and enhanced ferroelectric mesophase in QDs/FLC composites. J Phys Chem Solids. 2017;100:134–142. doi: 10.1016/j.jpcs.2016.09.018
  • Raina K. Nickel nanoparticles doped ferroelectric liquid crystal composites. Opt Mater. 2013;35(3):531–535. doi: 10.1016/j.optmat.2012.10.014
  • Salah MB, Nasri R, Alharbi AN, et al. Thermotropic liquid crystal doped with ferroelectric nanoparticles: electrical behavior and ion trapping phenomenon. J Mol Liq. 2022;357:119142. doi: 10.1016/j.molliq.2022.119142
  • Manohar R, Srivastava AK, Tripathi PK, et al. Dielectric and electro-optical study of ZnO nano rods doped ferroelectric liquid crystals. J Mater Sci. 2011;46(18):5969–5976. doi: 10.1007/s10853-011-5556-y
  • Ganguly P, Kumar A, Muralidhar K, et al. Nanoparticles induced multiferroicity in liquid crystal. Appl Phys Lett. 2016;108(18):182905. doi: 10.1063/1.4948652
  • Singh D, Pandey S, Gupta S, et al. Quenching of photoluminescence and enhanced contrast of ferroelectric liquid crystal dispersed with Cd1− XZnXS/ZnS core/shell nanocrystals. J Lumin. 2016;173:250–256. doi: 10.1016/j.jlumin.2015.12.042
  • Pote N, Doke S, Lohar A, et al. Improvement in molecular ordering of ferroelectric liquid crystal by incorporating CuGaS2/ZnS core/shell quantum dots. Liq Cryst. 2023;50:1–10. doi: 10.1080/02678292.2023.2181994
  • Doke S, Ganguly P, Mahamuni S. Improvement in molecular alignment of ferroelectric liquid crystal by Co-ZnO/ZnO core/shell quantum dots. Liq Cryst. 2020;47(3):309–316. doi: 10.1080/02678292.2019.1645898
  • Doke S, Ganguly P, Mahamuni S. Dielectric and electro-optical studies of Au/SnO2 core/shell nanocrystals incorporated ferroelectric liquid crystal. Liq Cryst. 2020;47(14–15):2305–2312. doi: 10.1080/02678292.2020.1794066
  • Doke S, Martinez-Teran E, El-Gendy AA, et al. Sustained multiferroicity in liquid crystal induced by core/shell quantum dots. J Mol Liq. 2019;288:110836. doi: 10.1016/j.molliq.2019.04.113
  • Singh DP, Duponchel B, Kondratenko K, et al. Phase contraction, fluorescence quenching and formation of topological defects in chiral smectic C matrix by Cd0.15Zn0.85S/ZnS core/shell quantum dots dispersion: faster electro-optic response for gadget displays. Liq Cryst. 2020;47(11):1638–1654. doi: 10.1080/02678292.2020.1754939
  • Kumar A, Singh DP, Singh G. Recent progress and future perspectives on carbon-nanomaterial-dispersed liquid crystal composites. J Phys D. 2021;55(8):083002. doi: 10.1088/1361-6463/ac2ced
  • Ahmad F, Luqman M, Jamil M. Advances in the metal nanoparticles (MNPs) doped liquid crystals and polymer dispersed liquid crystal (PDLC) composites and their applications-a review. Mol Cryst Liq Cryst. 2021;731(1):1–33. doi: 10.1080/15421406.2021.1954759
  • Kim BY, Kim JH, Lee KH, et al. Synthesis of highly efficient azure-to-blue-emitting Zn–Cu–Ga–S quantum dots. Chem Commun. 2017;53(29):4088–4091. doi: 10.1039/C7CC00952F
  • Liu Y, Li F, Huang H, et al. Optoelectronic and photocatalytic properties of I–III–VI QDs: bridging between traditional and emerging new QDs. J Semicond. 2020;41(9):091701. doi: 10.1088/1674-4926/41/9/091701
  • Jo DY, Yang H. Synthesis of highly white-fluorescent Cu–Ga–S quantum dots for solid-state lighting devices. Chem Commun. 2016;52(4):709–712. doi: 10.1039/C5CC07968C
  • Pathak G, Agrahari K, Yadav G, et al. Tuning of birefringence, response time, and dielectric anisotropy by the dispersion of fluorescent dye into the nematic liquid crystal. Appl Phys A. 2018;124(7):1–9. doi: 10.1007/s00339-018-1878-9
  • Singh S. Liquid crystals: fundamentals. Singapore: World Scientific; 2002.
  • Miyata H, Maeda M, Suzuki I. Cell thickness dependence of dielectric properties of ferroelectric liquid crystal (CS-1022). Liq Cryst. 1996;20(3):303–309. doi: 10.1080/02678299608032039
  • Thakur AK, Kaur S, Bawa SS, et al. Optical memory effect in a deformed helix ferroelectric liquid crystal. Appl Opt. 2004;43(30):5614–5617. doi: 10.1364/AO.43.005614
  • Prakash J, Mehta D, Choudhary A, et al. Criticality of bistability phenomenon in deformed helix ferroelectric liquid crystal. J Appl Phys. 2008;103(4):044103. doi: 10.1063/1.2838488
  • You Y, Tong X, Channa AI, et al. Tailoring the optoelectronic properties of eco‐friendly CuGaS2/ZnSe core/shell quantum dots for boosted photoelectrochemical solar hydrogen production. EcoMat. 2022;4:e12206. doi: 10.1002/eom2.12206
  • Pote N, Phadnis C, Sonawane K, et al. The impact of lattice strain on optical properties of CdS nanocrystals. Solid State Commun. 2014;192:6–9. doi: 10.1016/j.ssc.2014.04.017
  • Lim YJ, Kim JH, Her JH, et al. Viewing angle controllable liquid crystal display with high transmittance. Opt Express. 2010;18(7):6824–6830. doi: 10.1364/OE.18.006824
  • Kumar A, Prakash J, Deshmukh AD, et al. Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. Appl Phys Lett. 2012;100(13):134101. doi: 10.1063/1.3698120
  • Li L-S, Huang JY. Tailoring switching properties of dipolar species in ferroelectric liquid crystal with ZnO nanoparticles. J Phys D. 2009;42(12):125413. doi: 10.1088/0022-3727/42/12/125413
  • Li C, Chen W, Wu D, et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci Rep. 2015;5(1):1–9. doi: 10.1038/srep17777
  • Ganguly P, Kumar A, Tripathi S, et al. Faster and highly luminescent ferroelectric liquid crystal doped with ferroelectric BaTiO3 nanoparticles. Appl Phys Lett. 2013;102(22):222902. doi: 10.1063/1.4809515
  • Manohar R, Singh DP, Pandey S, et al. Analysis of faster optical response in core/shell nanocrystals ferroelectric liquid crystal composite. Photon Lett Poland. 2015;7(4):97–99. doi: 10.4302/plp.2015.4.04
  • Singh DP, Gupta SK, Yadav SP, et al. Guest–host interaction in ferroelectric liquid crystal–nanoparticle composite system. Bull Mater Sci. 2014;37(3):511–518. doi: 10.1007/s12034-014-0698-6
  • Ghosh S, Roy S, Acharya S, et al. Effect of multiferroic BiFeO3 nanoparticles on electro-optical and dielectric properties of a partially fluorinated orthoconic antiferroelectric liquid crystal mixture. Eurphys Lett. 2011;96(4):47003. doi: 10.1209/0295-5075/96/47003
  • Bawa A, Gangwar LK, Dhingra A, et al. Polarisation-dependent dielectric processes in ferroelectric liquid crystals. Liq Cryst. 2019;46(2):166–175. doi: 10.1080/02678292.2018.1480805
  • Shcherbinin D, Konshina E. Ionic impurities in nematic liquid crystal doped with quantum dots CdSe/ZnS. Liq Cryst. 2017;44(4):648–655. doi: 10.1080/02678292.2016.1227483
  • Garbovskiy Y. Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express. 2021;2(1):012004. doi: 10.1088/2632-959X/abe652
  • Nemati A, Shadpour S, Querciagrossa L, et al. Chirality amplification by desymmetrization of chiral ligand-capped nanoparticles to nanorods quantified in soft condensed matter. Nat Commun. 2018;9(1):1–13. doi: 10.1038/s41467-018-06400-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.