134
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Broad-wave reflection of polymer-stabilised cholesterol liquid crystal with nanofibers doped magnetic nanoparticles

, , , , , , & show all
Pages 168-181 | Received 28 Sep 2023, Accepted 20 Nov 2023, Published online: 28 Nov 2023

References

  • Gennes de PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1993.
  • Goodby JW. Chirality in liquid crystals. J Mater Chem. 1991;1(3):307–318. doi: 10.1039/jm9910100307
  • Serra AM, Mariani RD, Abruna HD, et al. Electrochemistry in liquid crystals: orientational effects in electrochemical processes. J Electrochem Soc. 1986;133(11):2226. doi: 10.1149/1.2108378
  • Yang Y, Zhang Y, Wei Z. Supramolecular helices: chirality transfer from conjugated molecules to structures. Adv Mater. 2013;25(42):6039–6049. doi: 10.1002/adma.201302448
  • Miao ZC, Chen XL, Zhang YZ, et al. Bistable cholesteric liquid crystal films with excellent electro-optical performance and spacing stability for reflective displays. ACS Appl Ploym Mater. 2023;5(1):476–484. doi: 10.1021/acsapm.2c01594
  • Zhang YZ, Zhu M, Zhao Y, et al. Dye-coated polymer stabilized cholesteric liquid crystal films for bistable reflective displays. Opt Mater. 2022;134:112991. doi: 10.1016/j.optmat.2022.112991
  • Sol JA, Timmermans GH, van Breugel AJ, et al. Multistate Luminescent Solar Concentrator “Smart” Windows. Adv Energy Mater. 2018;8(12):1702922. doi: 10.1002/aenm.201702922
  • Oh SW, Nam S, Kim SH, et al. Self-regulation of infrared using a liquid crystal mixture doped with push-pull azobenzene for energy-saving smart windows. ACS Appl Mater Inter. 2021;13(4):5028–5033. doi: 10.1021/acsami.0c19015
  • Zhang W, Lub J, Schenning APHJ, et al. Polymer stabilized cholesteric liquid crystal siloxane for temperature-responsive photonic coatings. IJMS. 2020;21(5):1803. doi: 10.3390/ijms21051803
  • Van Heeswijk EPA, Kloos JJH, Grossiord N, et al. Humidity-gated, temperature-responsive photonic infrared reflective broadband coatings. J Mater Chem A. 2019;7(11):6113–6119. doi: 10.1039/c9ta00993k
  • Hu X, Zeng W, Yang W, et al. Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liq Cryst. 2019;46(2):185–192. doi: 10.1080/02678292.2018.1483038
  • Hari K, Biso Y, Li Q. Liquid crystals: versatile self-organized smart soft materials. Chem Rev. 2022;122(5):4887–4926. doi: 10.1021/acs.chemrev.1c00761
  • Boudet A, Binet C, Mitov M, et al. Microstructure of variable pitch cholesteric films and its relationship with the optical properties. Eur Phys J E. 2000;2(3):247–253. doi: 10.1007/PL00013671
  • Guo J, Sun J, Zhang L, et al. Broadband reflection in polymer stabilized cholesteric liquid crystal cells with chiral monomers derived from cholesterol. Polym Adv Technol. 2008;19(11):1504–1512. doi: 10.1002/pat.1155
  • Broer DJ, Lub J, Mol GN. Photo-controlled diffusion in reacting liquid crystals: a new tool for the creation of complex molecular architectures. Macromol Symp. 1997;117(1):33–42. doi: 10.1002/masy.19971170107
  • Broer DJ, Mol GN, Haaren J. Photo-induced diffusion in polymerizing chiral-nematic media. Adv Mater. 1999;11(7):573–578. doi: 10.1002/(SICI)1521-4095(199905)11:7<573:AID-ADMA573>3.0.CO;2-E
  • Hu W, Chen M, Wang Q, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystals via thiol-acrylate chemistry. Angew Chem Int Ed. 2019;58(20):6698–6702. doi: 10.1002/anie.201902681
  • Zhao Y, Zhang L, He ZM, et al. Photoinduced polymer-stabilised chiral nematic liquid crystal films reflecting both right- and left-circularly polarized light. Liq Cryst. 2015;42(8):1120–1123. doi: 10.1080/02678292.2015.1025871
  • Guo J, Cao H, Wei J, et al. Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light. Appl Phys Lett. 2008;93:20. doi: 10.1063/1.3003869
  • Guo J, Yang H, Li R, et al. Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band. J Phys Chem C. 2009;113(37):16538–16543. doi: 10.1021/jp903394r
  • Guo J, Liu F, Chen F, et al. Realisation of cholesteric liquid-crystalline materials reflecting both right- and left-circularly polarised light using the wash-out/refill technique. Liq Cryst. 2010;37(2):171–178. doi: 10.1080/02678290903443897
  • Li Y, Liu Y, Luo D. Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol. Opt Express. 2017;25(21):26349–26355. doi: 10.1364/OE.25.026349
  • Zhang D, Shi W, Cao H, et al. Reflective band memory effect of cholesteric polymer networks based on washout/refilling method. Macromol Chem Phys. 2020;221(22):6. doi: 10.1002/macp.201900572
  • Bisoyi HK, Bunning TJ, Li Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures. Adv Mater. 2018;30(25):25. doi: 10.1002/adma.201706512
  • Bisoyi HK, Li Q. Light -driven liquid crystalline materials: from photo -induced phase transitions and property modulations to applications. Chem Rev. 2016;116(24):15089–15166. doi: 10.1021/acs.chemrev.6b00415
  • Xiang J, Li Y, Li Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Adv Mater. 2015;27(19):3014–3018. doi: 10.1002/adma.201500340
  • Gan P, Zhang XT, Zhao LM, et al. Broadband reflection in polymer-stabilized cholesteric liquid crystal film with zinc oxide nanoparticles film thermal diffusion method. Liq Cryst. 2021;48(14):1959–1968. doi: 10.1080/02678292.2021.1909765
  • Wang XM, Cao HC, Zhang L, et al. Graphene oxide modified with mesogenic groups and its effect in broad-band reflectors. Chempluschem. 2015;80(4):673–678. doi: 10.1002/cplu.201402315
  • Hu W, Zhao HY, Shan LK, et al. Magnetite nanoparticles/chiral nematic liquid crystal composites with magnetically addressable and magnetically erasable characteristics. Liq Cryst. 2010;37(5):563–569. doi: 10.1080/02678291003710441
  • Bukowczan A, Hebda E, Pielichowski K. The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. J Mol Liq. 2021;321:114849. doi: 10.1016/j.molliq.2020.114849
  • Sornkamnerd S, Okajima MK, Kaneko T. Tough and porous hydrogels prepared by simple lyophilization of LC gels. ACS Omega. 2017;2(8):5304–5314. doi: 10.1021/acsomega.7b00602
  • Tang C, Saquing CD, Morton SW, et al. Cross-linked polymer nanofibers for hyperthermophilic enzyme immobilization: approaches to improve enzyme performance. ACS Appl Mater Inter. 2014;6(15):11899–11906. doi: 10.1021/am5033633
  • Wang P, Li Y, Zhang C, et al. Characterization and antioxidant activity of trilayer gelatin/dextran-propyl gallate/gelatin films: electrospinning versus solvent casting. LWT-Food Sci Technol. 2020;128:109536. doi: 10.1016/j.lwt.2020.109536
  • Qin YS, Liu RM, Zhao Y, et al. Preparation of Dipyridamole/Polyurethane core-shell nanofibers by coaxial electrospinning for controlled-release antiplatelet application. J Nanosci Nanotechnol. 2016;16(7):6860–6866. doi: 10.1166/jnn.2016.11386
  • Jia MM, Miao ZZ, Wang D. Principles of preparing broad-wave reflective films supported by nanofiber networks. Liq Cryst. 2022;49(11):1448–1458. doi: 10.1080/02678292.2022.20-41744
  • Bourlinos AB, Bakandritsos A, Petridis D. Surface Modification of Ultrafine Magnetic Iron Oxide Particles. Chem Mater. 2002;14(8):3226–3228. doi: 10.1021/cm020404l
  • Wang Y, Teng XW, Wang JS, et al. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@Polystyrene core−Shell nanoparticles. Nano Lett. 2003;3(6):789–793. doi: 10.1021/nl034211o
  • Sun SH, Zeng H, Robinson DB, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J Am Chem Soc. 2004;126(1):273–279. doi: 10.1021/ja0380852
  • Joshi MG. Dependence of initial rate on initial initiator concentration in photoinitiated polymerizations. J Appl Polym Sci. 1981;26(11):3945–3946. doi: 10.1002/app.1981.070261140
  • Doornkamp AT, van Ekenstein GORA, Tan YY. Kinetic study of the photoinitiated polymerization of a liquid crystalline diacrylate monomer by d.s.c. In the isothermal mode. Polymer. 1992;33(13):2863–2867. doi: 10.1016/0032-3861(92)90468-C
  • Cho JD, Hong JW. Photo-curing kinetics for the UV-initiated cationic polymerization of a cycloaliphatic diepoxide system photosensitized by thioxanthone. Eur Polym J. 2005;41(2):367–374. doi: 10.1016/j.eurpolymj.2004.10.006
  • Park NH, Cho SA, Kim JY, et al. Preparation of polymer-dispersed liquid crystal films containing a small amount of liquid crystalline polymer and their properties. J Appl Polym Sci. 2000;77(14):3178–3188. doi: 10.1002/1097-4628(20000929)77:14<3178:AID-APP190>3.0.CO;2-E
  • Guillard H, Sixou P. Active broadband polymer stabilized liquid crystals. Liq Cryst. 2001;28(6):933–944. doi: 10.1080/02678290010028753
  • Guillard H, Sixou P, Reboul L, et al. Electro optical characterizations of polymer stabilized cholesteric liquid crystals. Polymer. 2001;42(24):9753–9762. doi: 10.1016/S0032-3861(01)00312-3
  • Wang F, Li K, Song P, et al. Photoinduced pitch gradients and the reflection behaviour of the broadband films: influence of dye concentration, light intensity, temperature and monomer concentration. Liq Cryst. 2012;39(6):707–714. doi: 10.1080/02-678292.2012.673018
  • Shi WT, Zhang XT, Han R, et al. Preparation of cholesteric polymer networks with broadband reflection memory effect. Liq Cryst. 2021;49(2):153–161. doi: 10.1080/02678292.2021.1949056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.