64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing vehicle/airborne displays with beam steering technology for improved viewing angles

, , , , &
Pages 194-205 | Received 27 Oct 2023, Accepted 25 Nov 2023, Published online: 05 Dec 2023

References

  • Huang ZK, Huang MX, Liu JW, et al. High-performance beam steering based on liquid crystal on silicon device operating at low bit depths with the maximum efficiency. Opt Laser Eng. 2022;156:107083. doi: 10.1016/j.optlaseng.2022.107083
  • Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992;257(5067):189–195. doi: 10.1126/science.257.5067.189
  • Lee YH, Zhan T, Wu ST. Enhancing the resolution of a near-eye display with a pancharatnam-berry phase deflector. Opt Lett. 2017;42(22):4732–4735. doi: 10.1364/OL.42.004732
  • Tan G, Lee YH, Wu ST, et al. Foveated imaging for near-eye displays. Opt Express. 2018;26(19):25076–25085.
  • Morris R, Jones C, Nagaraj M. Liquid crystal devices for beam steering applications. Micromachines-Basel. 2021;12(3):247. doi: 10.3390/mi12030247
  • Shen DZ, Yang MY, Fernández FA. Accurate modelling of the optics of high resolution liquid crystal devices: a reconfigurable liquid crystal grating. Liq Cryst. 2022;49(13):1797–1808. doi: 10.1080/02678292.2022.2070784
  • He ZQ, Gou FW, Chen R, et al. Liquid crystal beam steering devices: principles, recent advances, and future developments. Crystals. 2019;9(6):292–315.
  • Yang DK, Wu ST. Fundamentals of liquid crystal devices. 2nd ed. New York (NY): Wiley; 2014.
  • Lee H, Park HJ, Kwon OJ. The world’s first blue phase liquid crystal display. SID Symp Digest Tech Papers. 2011;42:121–124. doi: 10.1889/1.3621051
  • Kawashima S, Shishido H, Oshita S, et al. A 1058-ppi 4K ultrahighresolution and high aperture LCD with transparent pixels using OS/OC technology. SID Symp Digest Tech Papers. 2017;48:242–245. doi: 10.1002/sdtp.11679
  • Chou SY, Krauss PR, Renstrom PJ. Imprint of sub-25nm vias and trenches in polymers. Appl Phys Lett. 1995;67(21):3114–3116. doi: 10.1063/1.114851
  • Jo HB, Byeon KJ, Choi KW. Fabrication of ZnO nano-structures using polymer nanoim-print lithography of a ZnO nano-particle dispersion resin. J Mater Chem. 2012;22(38):20742–20746. doi: 10.1039/c2jm32509h
  • Jiao M, Li Y, Wu ST. Low voltage and high transmittance bluephase liquid crystal displays with corrugated electrodes. Appl Phys Letts. 2010;96(1):011102. doi: 10.1063/1.3290253
  • He ZQ, Yin K, Wu ST. Miniature planar telescopes for efficient, wide-angle, high-precision beam steering. Light Sci Appl. 2021;10(1):134. doi: 10.1038/s41377-021-00576-9
  • Li Y, Luo ZY, Wu ST. High-precision beam angle expander based on polymeric liquid crystal polarization lenses for LiDAR applications. Crystals. 2022;12(3):349. doi: 10.3390/cryst12030349
  • Tian LL, Chu F, Duan R, et al. Beam steering device based on blue phase liquid crystal. Opt Commun. 2020;481:126525. doi: 10.1016/j.optcom.2020.126525
  • Dou H, Chu F, Guo YQ, et al. Large aperture liquid crystal lens array using a composited alignment layer. Opt Express. 2018;26(7):9254–9262.
  • Chen HW, Lee JH, Lin BY, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light-Sci Appl. 2018;7(3):17168–17180.
  • Lu R, Wu ST, Lee SH. Reducing the color shift of a multidomain vertical alignment liquid crystal display using dual threshold voltages. Appl Phys Lett. 2008;92(5):051114. doi: 10.1063/1.2838752
  • Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature. 1996;381(6579):212–215. doi: 10.1038/381212a0
  • Park JH, Oh SW, Huh JW, et al. Four-domain electrode structure for wide viewing angle in a fringe-fieldswitching liquid crystal display. J Disp Technol. 2016;12(7):667–672.
  • Guo YQ, Li XS, Sun Y, et al. Low gamma shift blue-phase liquid crystal display with electric filed induced multi-domain electrode structure. Liq Cryst. 2020;47(1):54–66.
  • Jeong E, Lim YJ, Rhee JM, et al. Viewing angle switching of vertical alignment liquid crystal displays by controlling birefringence of homogenously aligned liquid crystal layer. Appl Phys Lett. 2007;90(5):051116.
  • Jo SI, Lee SG, Lee YJ, et al. Viewing angle controllable liquid crystal display under optical compensation. Opt Eng. 2011;50(9):094003.1–094003.5.
  • Feng Q, Qigong LV, Wang Y, et al. The design and optimization of lens array for LED backlight in LCD imaging engine of helmet-mounted display. J Soc Inf Display. 2017;25(4–6):312–319. doi: 10.1002/jsid.553
  • Chen BT, Pan JW. High-efficiency directional backlight design for an automotive display. Appl Opt. 2018;57(16):4386–4395. doi: 10.1364/AO.57.004386
  • Dou H, Wang L, Xu LP, et al. Directional modulated light-emitting technology based on airborne display. Liq Cryst. 2022;49(15):2146–2154.
  • Chen BT, Pan JW. High-efficiency directional backlight design for an automotive display. Appl Optic. 2018;57(16):4386–4395. doi: 10.1364/AO.57.004386
  • Feng QB, Yin HJ, Cheng X, et al. Design of optical film with microstructure for viewing angle deflection. Opt Precis Eng. 2016;24(5):1009–1014.
  • Gao Y, Luo Z, Zhu R, et al. A high performance single-domain LCD with wide luminance distribution. J Disp Technol. 2015;11(4):315–324.
  • Shang X, Tan JY, Willekens O, et al. Electrically controllable liquid crystal component for efficient light steering. IEEE Photon J. 2015;7(2):1–13.
  • Willekens O, Jia X, Vervaeke M, et al. Reflective liquid crystal hybrid beam-steerer. Opt Express. 2016;24(19):21541–21550.
  • Dou H, Chen M, Li D, et al. A controllable viewing angle optical film using micro prisms filled with liquid crystal. Liq Cryst. 2021;48(10):1373–1381.
  • Kriezis EE, Elston SJ. Finite-difference time domain method for light wave propagation within liquid crystal devices. Opt Commun. 1999;165(1–3):99–105. doi: 10.1016/S0030-4018(99)00219-9
  • Hwang DK, Rey AD. Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain method. Appl Optics. 2005;44(21):4513–4522. doi: 10.1364/AO.44.004513
  • Ogawa Y, Fukuda J-I, Yoshida H, et al. Finite-difference time-domain analysis of cholesteric blue phase II using the Landau–de Gennes tensor order parameter model. Opt Lett. 2013;38(17):3380–3383.
  • Dou H, Ma HM, Sun YB. Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method. Chinese Phys B. 2016;25(9):117–121. doi: 10.1088/1674-1056/25/9/094221
  • Dou H, Wang L, Ren G, et al. A light-mixing liquid crystal lens-like cell to decrease color shift and tune brightness for displays. Crystals. 2022;12(2):213–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.