347
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cholesteric nanostructure biosensors on flexible paper fibres for disease detection through label-free techniques and image analysis

, , , , &
Pages 215-222 | Received 28 Sep 2023, Accepted 28 Nov 2023, Published online: 10 Dec 2023

References

  • Yüce M, Filiztekin E, Özkaya KGJB, et al. COVID-19 diagnosis—a review of current methods. Biosens Bioelectron. 2021;172:112752. doi: 10.1016/j.bios.2020.112752
  • Khandker SS, Nik Hashim NHH, Deris ZZ, et al. Diagnostic accuracy of rapid antigen test kits for detecting SARS-CoV-2: a systematic review and meta-analysis of 17,171 suspected COVID-19 patients. J Clin Med. 2021;10(16):3493.
  • Ellerbee AK, Phillips ST, Siegel AC, et al. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem. 2009;81(20):8447–8452.
  • Lin J-H, Chen S-J, Lee J-E, et al. The detection of Mercury (II) ions using fluorescent gold nanoclusters on a portable paper-based device. J Chem Eng. 2022;430:133070. doi: 10.1016/j.cej.2021.133070
  • Yuan H, Tsai T-T, Wang H-P, et al. A manual and portable centrifuge combined with a paper-based immunoassay for myocardial infarction diagnosis. Chem Eng J. 2021;409:128131. doi: 10.1016/j.cej.2020.128131
  • Martinez AW, Phillips ST, Whitesides GMJAC. Devices (uPADs)-are a new platform designed for ASSURED. Chem Rev. 2010;82:3–10. doi: 10.1021/ac9013989
  • Yu H, Tan X, Zhang L, et al. Metal-organic framework-enabled surface state passivation integrating with single-nuclease-propelled multistage amplification for ultrasensitive lab-on-paper photoelectrochemical biosensing. Chem Eng J. 2022;450:137955. doi: 10.1016/j.cej.2022.137955
  • Yang H, Wang J, Yu H, et al. FeOOH/Cu2O/CuS photocathode-enabled simultaneous promotion on charge carrier separation and electron acceptor reduction for lab-on-paper homogeneous cathodic photoelectrochemical bioassay. Chem Eng J. 2022;430:132846. doi: 10.1016/j.cej.2021.132846
  • Aliño VJ, Yang K-L. Using liquid crystals as a readout system in urinary albumin assays. Analyst. 2011;136(16):3307–3313. doi: 10.1039/c1an15143f
  • Hsiao Y-C, Lee W. Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films. Opt Express. 2015;23(17):23636–22642. doi: 10.1364/OE.23.022636
  • Chen C-H, Yang K-L. Liquid crystal-based immunoassays for detecting hepatitis B antibody. Anal Biochem. 2012;421(1):321–323. doi: 10.1016/j.ab.2011.11.007
  • Kim SR, Abbott NL. Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals. Adv Mater. 2001;13(19):1445–1449. doi: 10.1002/1521-4095(200110)13:19<1445:AID-ADMA1445>3.0.CO;2-9
  • Tan H, Li X, Liao S, et al. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens Bioelectron. 2014;62:84–89. doi: 10.1016/j.bios.2014.06.029
  • Hsiao Y-C, Yang Z-H, Shen D, et al. Red, green, and blue reflections enabled in electrically tunable thin films of one-dimensional photonic cholesterics. Adv Opt Mater. 2018;6:170112. doi: 10.1002/adom.201701128
  • Matz PG, Massa SM, Weinstein PR, et al. Focal hyperexpression of hemeoxygenase-1 protein and messenger RNA in rat brain caused by cellular stress following subarachnoid injections of lysed blood. J Neurosurg. 1996;85(5):892–900.
  • Hsiao Y-C, Tang C-Y, Lee W. Fast-switching bistable cholesteric intensity modulator. Opt Exp. 2011;19(10):9744–9749. doi: 10.1364/OE.19.009744
  • Hsiao Y-C, Wu C-Y, Chen C-H, et al. Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal. Opt Lett. 2011;36(14):2632–2634.
  • Hsiao Y-C, Timofeev IV, Zyryanov VY, et al. Hybrid alignment for a color-reflective dual-frequency cholesteric liquid crystal display switched by low voltages. Opt Mater Exp. 2015;5(11):2715–2720.
  • Chuang E-Y, Huang W-H, Ho T-L, et al. IR-inspired visual display/response device fabricated using photothermal liquid crystals for medical and display applications. Chem Eng J. 2022;429:132213. doi: 10.1016/j.cej.2021.132213
  • Lin P, Yan Q, Wei Z, et al. Electrically modulated optical properties of fluorescent chiral nematic liquid crystals. Chem Eng J. 2018;341:565–577. doi: 10.1016/j.cej.2018.02.007
  • Hsiao Y-C, Sung Y-C, Lee M-J, et al. Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal. Bio Opt Exp. 2015;6(12):5033–5038.
  • Belmonte A, Ussembayev YY, Bus T, et al. Dual light and temperature responsive micrometer‐sized structural color actuators. Small. 2020;16(1):1905219.
  • Joshi V, Paterson DA, Storey J, et al. Augmenting Bragg reflection with polymer-sustained conical helix. Sci Rep. 2019;9(1):1–10.
  • Su H-W, Lee Y-H, Lee M-J, et al. Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals. J Biomed Opt. 2014;19(7):077006.
  • Huang HM, Chuang EY, Chen FL, et al. Color-indicating, label-free, dye-doped liquid crystal organic-polymer-based-bioinspired sensor for biomolecule immunodetection. Polymers. 2020;12(10):2294.
  • Hsiao Y-C. Liquid crystal-based tunable photonic crystals for pulse compression and signal enhancement in multiphoton fluorescence. Opt Mater Exp. 2016;6(6):1929–1934. doi: 10.1364/OME.6.001929
  • Hsiao Y-C, Hou C-T, Zyryanov VY, et al. Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures. Opt Exp. 2011;19(24):7349–7355.
  • Furumi S. Self-assembled organic and polymer photonic crystals for laser applications. Polym J. 2013;45(6):579–593. doi: 10.1038/pj.2012.181
  • Fan Y-J, Lin J-D, Hsiao Y-C. Label-free and color-indicating biosensors by cholesteric liquid crystals on single vertical alignment substrate. Biomed Opt Exp. 2019;6:1701128.
  • Chuang E-Y, Ho T-L, Wang Y-C, et al. Smartphone and home-based liquid crystal sensor for rapid screening of acute myocardial infarction by naked-eye observation and image analysis. Talanta. 2022;250:123698. doi: 10.1016/j.talanta.2022.123698
  • Chuang E-Y, Lin P-Y, Wang P-F, et al. Label-free, smartphone-based, and sensitive nano-structural liquid crystal aligned by ceramic silicon compound–constructed dmoap-based biosensor for the detection of urine albumin. Int J Nanomed. 2021;16:763. doi: 10.2147/IJN.S285125
  • Luh HT, Chung Y-W, Cho P-Y, et al. Label-free cholesteric liquid crystal biosensing chips for heme oxygenase-1 detection within cerebrospinal fluid as an effective outcome indicator for spontaneous subarachnoid hemorrhage. Biosensors. 2022;12(4):204.
  • Chen FL, Luh HT, Hsiao YC. Label-free, color-indicating, polarizer-free dye-doped liquid crystal microfluidic polydimethylsiloxane biosensing chips for detecting albumin. Polymers. 2021;13(16):2587. doi: 10.3390/polym13162587