93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement in electrical response of liquid crystals with carbon nanotubes doping

, &
Pages 233-242 | Received 19 Oct 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Catalan G, Lubk A, Vlooswijk AHG, et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat Mater. 2011;10(12):963–967. doi: 10.1038/nmat3141
  • Zubko P, Catalan G, Tagantsev AK. Flexoelectric effect in solids. Ann Rev Mater Res. 2013;43(1):387–421. doi: 10.1146/annurev-matsci-071312-121634
  • Lee JH, Lee J-Y, Yu Y-S, et al. Electrical energy harvesting from the flexible liquid crystal cells. J Phys Chem C. 2021;125:22429–22439. doi: 10.1021/acs.jpcc.1c05372
  • Lu H, Bark C-W, Esque de Los Ojos D, et al. Mechanical writing of ferroelectric polarization. Science. 2012;336:59–61. doi: 10.1126/science.1218693
  • Kalinin SV, Morozovska AN. Focusing light on flexoelectricity. Nat Nanotech. 2015;10:916–917. doi: 10.1038/nnano.2015.213
  • Wu M, Zhang X, Li X, et al. Engineering of atomic-scale flexoelectricity at grain boundaries. Nat Commun. 2022;13:216. doi: 10.1038/s41467-021-27906-0
  • Collings PJ, Goodby JW. Introduction to liquid crystals: chemistry and physics. CRC Press; 2019. doi: 10.1201/9781315098340
  • Vitoriano C, Sátiro C. Consequences of director-density coupling theory for flexoelectricity in nematic liquid crystals. Phys Rev E. 2016;93(2):022702. doi: 10.1103/PhysRevE.93.022702
  • Krekhov A, Pesch W, Buka Á. Flexoelectricity and pattern formation in nematic liquid crystals. Phys Rev E. 2011;83:051706. doi: 10.1103/PhysRevE.83.051706
  • Skarabot M, Mottram NJ, Kuar S, et al. Flexoelectric polarization in a nematic liquid crystal enhanced by dopants with different molecular shape polarities. ACS Omega. 2022;7:9785. doi: 10.1021/acsomega.2c00023
  • Vaupotič N, Čepič M, Osipov MA, et al. Flexoelectricity in chiral nematic liquid crystals as a driving mechanism for the twist-bend and splay-bend modulated phases. Phys Rev E. 2014;89(3):030501(R). doi: 10.1103/PhysRevE.89.030501
  • Lelidis I, Kume E. A new flexoelectric mode in twist-bend nematic liquid crystals. J Mol Liq. 2019;295:111707. doi: 10.1016/j.molliq.2019.111707
  • Oskirko AD, Ul’yanov SV, Val’kov AY. Influence of flexoelectric effect on the Fréedericksz transition in chiral nematic liquid crystals. Phys Rev E. 2018;98:012702. doi: 10.1103/PhysRevE.98.012702
  • Shen Y, Dierking I. Perspectives in liquid-crystal-aided nanotechnology and nanoscience. Appl Sci. 2019;9(12):2512. doi: 10.3390/app9122512
  • Moghadas F, Khoshsima H, Olyaeefar B. High diffraction efficiency in permanent optical memories based on methyl red doped liquid crystal. Opt Quantum Electron. 2015;47(2):225–233. doi: 10.1007/s11082-014-9906-2
  • Emdadi M, Poursamad JB, Sahrai M, et al. Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host. Mol Phys. 2018;116:1650. doi: 10.1080/00268976.2018.1441462
  • Poursamad JB, Emdadi M. Optical nonlinearity of liquid crystals in the presence of chained ferroelectric nanoparticles. Acta Phys Pol A. 2019;136(6):861. doi: 10.12693/APhysPolA.136.861
  • Poursamad JB, Hallaji T. Freedericksz transition in smectic-A liquid crystals doped by ferroelectric nanoparticles. Physica B. 2017;504:112–115. doi: 10.1016/j.physb.2016.10.022
  • Bury P, Veveričík M, Černobila F, et al. Role of magnetic nanoparticles size and concentration on structural changes and corresponding magneto-optical behavior of nematic liquid crystals. Nanomaterials. 2022;12:2463. doi: 10.3390/nano12142463
  • Emdadi M, Poursamad JB, Sahrai M, et al. Investigation of nematic liquid crystals doped with spherical multiferroic nanoparticles in the presence of a magnetic field. Braz J Phys. 2018;48(5):433–441. doi: 10.1007/s13538-018-0590-8
  • Jahanbakhsh F, Poursamad JB, Majles Ara MH, et al. Dispersion of multiferroic BiFeO3 nanoparticles in nematic liquid crystals. Appl Phys A. 2019;125(12):877. doi: 10.1007/s00339-019-3153-0
  • Kumar S. Discotic liquid crystal-nanoparticle hybrid systems. Npg Asia Mater. 2014;6(1):e82. doi: 10.1038/am.2013.75
  • Moghaddas F, Poursamad JB, Sahrai M, et al. Carbon nanotube effect on the reverse flexoelectricity of a planar liquid crystal cell. Liq Cryst. 2020;47(1):1–9. doi: 10.1080/02678292.2020.1746846
  • Zakhlevnykh AN, Petrov DA, Skokov PK. Influence of ferromagnetic carbon nanotubes on magnetic transitions in liquid crystals. J Exp Theor Phys. 2018;127(4):767–777. doi: 10.1134/S1063776118090236
  • Lisetski LN, Lebovka NI, Naydenov SV, et al. Dispersions of multi-walled carbon nanotubes in liquid crystals: a physical picture of aggregation. J Mol Liq. 2011;164(1–2):143–147. doi: 10.1016/j.molliq.2011.04.020
  • Bennett D. Flexoelectric-like radial polarization of single-walled nanotubes from first-principles. Electron Struct. 2021;3(1):015001. doi: 10.1088/2516-1075/aba095
  • Lahiri T, Pushkar SK, Poddar P. Theoretical study on the effect of electric field for carbon nanotubes dispersed in nematic liquid crystal. Physica B. 2020;588:412177. doi: 10.1016/j.physb.2020.412177
  • Ma Z, Gao Y, Cao H. The effect of chemically modified multi-walled carbon nanotubes on the electro-optical properties of a twisted nematic liquid crystal display mode. Crystals. 2022;12:1482. doi: 10.3390/cryst12101482
  • Sumandra SB, Mahendra B, Nugroho F, et al. Alignment of carbon nanotubes under the influences of nematic liquid crystals and electric fields — an analytical study. Int J Comput Mater Sci Eng. 2022;11:2150033. doi: 10.1142/S2047684121500330
  • Popa-Nita V. Mixtures composed of liquid crystals and carbon nanotubes. J Chem Phys. 2014;140(16):164905. doi: 10.1063/1.4872241
  • Moghadas F, Poursamad JB, Sahrai M, et al. Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host. Eur Phys J E. 2019;42:103. doi: 10.1140/epje/i2019-11864-1
  • Buka A, Éber N. Flexoelectricity in liquid crystals: theory, experiments and applications. Imperial College Press; 2013. doi: 10.1142/p812
  • Helfreich W. The strength of piezoelectricity in liquid crystals. Z Naturforsch A. 1971;26(5):833–835. doi: 10.1515/zna-1971-0510
  • Prost J, Marcerou JP. On the microscopic interpretation of flexoelectricity. J de Phys. 1977;38:315–324. doi: 10.1051/jphys:01977003803031500
  • Tartan CC, Elston SJ. Hybrid aligned nematic based measurement of the sum (e1+ e3) of the flexoelectric coefficients. J Appl Phys. 2015;117:064107. doi: 10.1063/1.4908110
  • Alexe-Ionescu AL. Flexoelectric polarization and second order elasticity for nematic liquid crystals. Phys Lett A. 1993;180(6):456. doi: 10.1016/0375-9601(93)90299-F
  • Vertogen G, Flapper SDP, Dullemond C. Elastic constants of nematic and cholesteric liquid crystals and tensor fields. J Chem Phys. 1982;76(1):616–618. doi: 10.1063/1.442711
  • Van Der Schoot P, Popa-Nita V, Kralj S. Alignment of carbon nanotubes in nematic liquid crystals. J Phys Chem B. 2008;112:4512. doi: 10.1021/jp712173n
  • Popa-Nita V, Kralj S. Liquid crystal-carbon nanotubes mixtures. J Chem Phys. 2010;132(2):024902. doi: 10.1063/1.3291078
  • Shah Hemang J, Fontecchio Adam K, Mattia D, et al. Field controlled nematic-to-isotropic phase transition in liquid crystal–carbon nanotube composites. J Appl Phys. 2008;103(6):064314. doi: 10.1063/1.2844384
  • Lynch Michael D, Patrick David L. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2002;2(11):1197–1201. doi: 10.1021/nl025694j
  • Basu R, Iannacchione Germano S. Carbon nanotube dispersed liquid crystal: a nano electromechanical system. Appl Phys Lett. 2008;93:183105. doi: 10.1063/1.3005590
  • Basu R, Iannacchione Germano S. Dielectric hysteresis, relaxation dynamics, and nonvolatile memory effect in carbon nanotube dispersed liquid crystal. J Appl Phys. 2009;106(12):124312. doi: 10.1063/1.3272080
  • Basu R, Iannacchione Germano S. Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal. Phys Rev E. 2010;81(5):051705. doi: 10.1103/PhysRevE.81.051705
  • Basu R, Iannacchione Germano S. Nematic anchoring on carbon nanotubes. Appl Phys Lett. 2009;95(17):173113. doi: 10.1063/1.3256013
  • Chen H-Y, Lee W. Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field. Opt Rew. 2005;12(3):223–225. doi: 10.1007/s10043-005-0223-7
  • Lee W, Gau J-S, Chen H-Y. Electro-optical properties of planar nematic cells impregnated with carbon nanosolids. Appl Phys B. 2005;81(2–3):171–175. doi: 10.1007/s00340-005-1914-2
  • Huang C-Y, Pan H-C, Hsieh C-T. Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell. Jpn J Appl Phys. 2006;45(8A):6392–6394. doi: 10.1143/JJAP.45.6392
  • Lisetski L, Bulavin L, Lebovka N. Effects of dispersed carbon nanotubes and emerging supramolecular structures on phase transitions in liquid crystals: physico-chemical aspects. Liquids. 2023;3(2):246–277. doi: 10.3390/liquids3020017
  • Petrov AG, Marinov YG, Hinov HP, et al. Observation of flexoelectricity in a mixture of carbon single walled nanotubes with a nematic liquid crystal. Mol Cryst Liq Cryst. 2011;545:58. doi: 10.1080/15421406.2011.571975

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.