78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alkyl acid hydrazide-containing liquid crystalline triphenylenedicarboxyimides

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 243-254 | Received 19 May 2023, Accepted 11 Aug 2023, Published online: 19 Dec 2023

References

  • Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals. Chem Rev. 2016;116(3):1139–1241. doi: 10.1021/acs.chemrev.5b00190
  • Schmidt-Mende L, Fechtenkötter A, Müllen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 2001;293(5532):1119–1122. doi: 10.1126/science.293.5532.1119
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35(1):83–109. doi: 10.1039/B506619K
  • Kumar S. Triphenylene-based discotic liquid crystal dimers, oligomers and polymers. Liq Cryst. 2005;32(9):1089–1113. doi: 10.1080/02678290500117415
  • Gupta RK, Manjuladevi V, Karthik C, et al. Thin films of discotic liquid crystals and their applications. Liq Cryst. 2016;43(13–15):2079–2091. doi: 10.1080/02678292.2016.1195454
  • Bisoyi HK, Li Q. Liquid crystals: versatile self-organized smart soft materials. Chem Rev. 2022;122(5):4887–4926. doi: 10.1021/acs.chemrev.1c00761
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36(12):1902–1929. doi: 10.1039/b417320c
  • Kumar M, Kumar S. Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Polym J. 2017;49(1):85–111. doi: 10.1038/pj.2016.109
  • Gowda A, Kumar M, Kumar S. Discotic liquid crystals derived from polycyclic aromatic cores: from the smallest benzene to the utmost graphene cores. Liq Cryst. 2017;44(12–13):1990–2017. doi: 10.1080/02678292.2017.1321151
  • Setia S, Sidiq S, De J, et al. Applications of liquid crystals in biosensing and organic light-emitting devices: future aspects. Liq Cryst. 2016;43(13–15):2009–2050. doi: 10.1080/02678292.2016.1213002
  • Osawa T, Kajitani T, Hashizume D, et al. Wide-range 2D lattice correlation unveiled for columnarly assembled triphenylene hexacarboxylic esters. Angew Chem Int Ed. 2012;124(32):8114–8117. doi: 10.1002/ange.201203077
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46(26):4832–4887. doi: 10.1002/anie.200604203
  • Shah A, Singh DP, Duponchel B, et al. Molecular ordering dependent charge transport in π-stacked triphenylene based discotic liquid crystals and its correlation with dielectric properties. J Mol Liq. 2021;342(15):117353–117361. doi: 10.1016/j.molliq.2021.117353
  • Voisin E, Williams VE. The impact of molecular symmetry and shape on the stability of discotic liquid crystals. Can J Chem. 2018;96(2):132–138. doi: 10.1139/cjc-2017-0317
  • Lavigueur C, Foster EJ, Williams VE. Self-assembly of discotic mesogens in solution and in liquid crystalline phases: effects of substituent position and hydrogen bonding. J Am Chem Soc. 2008;130(35):11791–11800. doi: 10.1021/ja803406k
  • Voisin E, Foster EJ, Rakotomalala M, et al. Effects of symmetry on the stability of columnar liquid crystals. Chem Mater. 2009;21(14):3251–3261. doi: 10.1021/cm9012443
  • Ikeda M, Takeuchi M, Shinkai S. Unusual emission properties of a triphenylene-based organogel system. Chem Commun. 2003;1354–1355. doi: 10.1039/b302415f
  • Cammidge AN, Gopee H. Macrodiscotic triphenylenophthalocyanines. Chem Commun. 2002;9(9):966–967. doi: 10.1039/b200978a
  • Cammidge AN, Bhushby RJ. Handbook of liquid crystals. Demus D, Goodby J, Gray G, Spiess H, Vill V, editors. Vol. 2B. New York: Wiley-VCH; 1998. p. 693.
  • Paraschiv I, Lange KD, Giesbers M, et al. Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. J Mater Chem. 2008;18(45):5475–5481. doi: 10.1039/b805283b
  • González-Rodríguez D, Schenning APHJ. Hydrogen-bonded supramolecular π-functional materials. Chem Mater. 2011;23(3):310–325. doi: 10.1021/cm101817h
  • Herbst S, Soberats B, Leowanawat P, et al. A columnar liquid-crystal phase formed by hydrogen-bonded perylene bisimide J-aggregates donor-acceptor dyad. Angew Chem Int Ed. 2017;56(8):2162–2165. doi: 10.1002/anie.201612047
  • Knelles J, Wanner C, Schulz F, et al. Liquid crystalline hydrazones revisited: dipolar interactions vs hydrogen bonding affecting mesomorphic properties. Liq Cryst. 2021;48(10):1382–1391. doi: 10.1080/02678292.2021.1873438
  • Zhao KQ, Guo JZ, Yu WH, et al. Synthesis and mesomorphism of asymmetric triphenylene discotic liquid crystals bearing with mono-amido-based alkyl soft chains. Mol Cryst Liq Cryst. 2011;542(1):37–47. doi: 10.1080/15421406.2011.569516
  • Gearba RI, Lehmann M, Levin J. Tailoring discotic mesophases: columnar order enforced with hydrogen bonds. Adv Mater. 2003;15(19):1614–1618. doi: 10.1002/adma.200305137
  • Kato T, Frechet JMJ. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain. Macromolecules. 1989;22(9):3818–3819. doi: 10.1021/ma00199a060
  • Miao J, Zhu L. Hydrogen bond-assisted supramolecular self-assembly of doubly discotic supermolecules based on porphyrin and triphenylene. Chem Mater. 2010;22(1):197–206. doi: 10.1021/cm902731u
  • Paraschiv I, Giesbers M, van Lagen B, et al. H-bond-stabilized triphenylene-based columnar discotic liquid crystals. Chem Mater. 2006;18(4):968–974. doi: 10.1021/cm052221f
  • Kajitani T, Kohmoto S, Yamamoto M, et al. Generation of stable calamitic liquid-crystal phases with lateral intermolecular hydrogen bonding. Chem Mater. 2004;16(12):2329–2331. doi: 10.1021/cm049574j
  • Chen M, Zhang TR, Yu WH, et al. Hydrogen-bonding stabilized columnar mesophases in hexasubstituted triphenylene 2,3-dicarboxamides. J Mol Liq. 2022;366:120–122. doi: 10.1016/j.molliq.2022.120122
  • Yu WH, Wang Y, Feng C, et al. Room-temperature triphenylene-based discotic liquid crystal dimers: effects of amide linkage and central fluoromethylene spacer. Liq Cryst. 2023;50(4):713–724. doi: 10.1080/02678292.2023.2168777
  • Lee JH, Jang I, Hwang SH, et al. Self-assembled discotic nematic liquid crystals formed by simple hydrogen bonding between phenol and pyridine moieties. Liq Cryst. 2012;39(8):973–981. doi: 10.1080/02678292.2012.689020
  • Kishikawa K, Nakahara S, Nishikawa Y, et al. A ferroelectrically switchable columnar liquid crystal phase with achiral molecules: superstructures and properties of liquid crystalline ureas. J Am Chem Soc. 2005;127(8):2565–2571. doi: 10.1021/ja046100c
  • Bai B, Wang H, Xin H, et al. Hydrazide-based organogels and liquid crystals with columnar order. New J Chem. 2007;31(3):401–408. doi: 10.1039/b614444f
  • Ran X, Wang H, Zhang P, et al. Anticlinic smectic phase formed by calamitic hydrazide derivatives with terminal hydroxyl group. Liq Cryst. 2011;38(10):1227–1237. doi: 10.1080/02678292.2011.604140
  • Srinivasa HT, Palakshamurthy BS, Venkatesha MA, et al. Synthesis/Structural and mesomorphic properties of substituted hydrazide based calamitic molecules. Phase Transit. 2019;92(11):1043–1053. doi: 10.1080/01411594.2019.1669034
  • Liao LQ, Liu RD, Hu SW, et al. Self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC Adv. 2022;12(31):20218–20226. doi: 10.1039/D2RA01391F
  • Wang HT, Shao RF, Zhu CH, et al. Symmetric liquid crystal dimers containing hydrazide groups: parity-dependent smectic structure, hydrogen bonding and substitution effect. Liq Cryst. 2008;35(8):967–974. doi: 10.1080/02678290802308035
  • Bai BL, Wang HT, Xin H, et al. Hydrazide-based non-symmetric liquid crystal dimers: synthesis and mesomorphic behavior. J Phys Org Chem. 2007;20(8):589–593. doi: 10.1002/poc.1211
  • Bai BL, Wang HT, Xin H, et al. Hydrazide-based organogels and liquid crystals with columnar order. New J Chem. 2007;31(3):401–408. doi: 10.1039/b614444f
  • Du Y, Zhao CL, Fan SY, et al. Synthesis and liquid crystalline behavior of hydrazide-functionalized triphenylenedicarboxyimides. Liq Cryst. 2022;49(5):719–730. doi: 10.1080/02678292.2021.2006811
  • Fan SY, Xu HT, Li QG, et al. Discotic mesogens based on triphenylene-fused benzimidazole or pyrimidine: facile synthesis, mesomorphism, optical properties and self-assembly. Liq Cryst. 2020;47(7):1041–1054. doi: 10.1080/02678292.2019.1704898
  • Psutka KM, Ledrew J, Maly KE, et al. Synthesis and self-assembly of liquid crystalline triphenylenedicarboxythioimides. J Org Chem. 2019;84(17):10796–10804. doi: 10.1021/acs.joc.9b01330
  • Feng C, Ding YH, Han XD, et al. Triphenylene 2,3-dicarboxylic imides as luminescent liquid crystals: Mesomorphism, optical and electronic properties. Dyes Pigm. 2017;139:87–96. doi: 10.1016/j.dyepig.2016.12.001
  • Zhao KQ, Du JQ, Long XH, et al. Design of janus triphenylene mesogens: facile synthesis, mesomorphism, photoluminescence, and semiconductivity. Dyes Pigm. 2017;143:252–260. doi: 10.1016/j.dyepig.2017.04.048
  • Zhao KQ, Gao Y, Yu WH, et al. Discogens possessing aryl side groups synthesized by Suzuki coupling of triphenylene triflates and their self-organization behavior. Eur J Org Chem. 2016;2016(16):2802–2814. doi: 10.1002/ejoc.201600270
  • Zhao KQ, Jing M, An LL, et al. Facile transformation of 1-aryltriphenylenes into dibenzo[fg,op]tetracenes by intramolecular Scholl cyclodehydrogenation: synthesis, self-assembly, and charge carrier mobility of large π-extended discogens. J Mater Chem C. 2017;5(3):669–682. doi: 10.1039/C6TC04530H
  • Kumar S, Manickam M, Balagurusamy VSK, et al. Electrophilic aromatic substitution in triphenylene discotics: synthesis of alkoxynitrotriphenylenes. Liq Cryst. 1999;26(10):1455–1466. doi: 10.1080/026782999203788
  • Henderson P, Kumar S, Rego JA, et al. The synthesis of alkoxybromotriphenylenes: new discotic liquid crystals and valuable precursors to ‘mixed tail’ discotics. J Chem Soc Chem Commun. 1995;10:1059–1060. doi: 10.1039/C39950001059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.