129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning studies for liquid crystal texture recognition

, &
Pages 255-264 | Received 12 Sep 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Mjolsness E, DeCoste D. Machine learning for science: state of the art and future prospects. Science. 2001;293(5537):2051–2055. doi: 10.1126/science.293.5537.2051
  • Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep learning. Nat Commun. 2014;5(1):4308. doi: 10.1038/ncomms5308
  • Chen X, Xu S, Shabani S, et al. Machine learning for optical scanning probe nanoscopy. Adv Mat. 2022;2109171(34):1–15. doi: 10.1002/adma.202109171
  • Deng DL, Li X, Das S, et al. Machine learning topological states. Phys Rev B. 2017;96(19):195145. doi: 10.1103/PhysRevB.96.195145
  • Carrasquilla J, Melko RG. Machine learning phases of matter. Nat Phys. 2017;13(5):431–434. doi: 10.1038/nphys4035
  • Bach MJS, Golubeva A, Melko RG. Machine learning vortices at the Kosterlitz-Thouless transition. Phys Rev B. 2018;97(4):045207. doi: 10.1103/PhysRevB.97.045207
  • Wang C, Zhai H. Machine learning of frustrated classical spin models. Phys Rev B. 2017;96(14):144432. doi: 10.1103/PhysRevB.96.144432
  • Walters M, Wei Q, Chen JZY. Machine learning topological defects of confined liquid crystals in two dimensions. Phys Rev E. 2019;99(6):062701. doi: 10.1103/PhysRevE.99.062701
  • Sigaki H, de Souza R, de Souza R, et al. Estimating physical properties from liquid crystal textures via machine learning and complexity-entropy methods. Phys Rev E. 2019;99(1):013311. doi: 10.1103/PhysRevE.99.013311
  • Osiecka-Drewniak N, Czarnecki MA, Galewski Z. Investigation of phase transitions in liquid crystal 12BBAA using window clustering of infrared spectra. J Mol Liq. 2021;341:117233. doi: 10.1016/j.molliq.2021.117233
  • Tarca AL, Carey VJ, Chen XW, et al. Machine learning and its application to biology. PLoS Comput Biol. 2007;3(6):0953–0963. doi: 10.1371/journal.pcbi.0030116
  • Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokin Pharmacodyn. 2022;49(1):19–37. doi: 10.1007/s10928-021-09790-9
  • Pessa AAB, Zola RS, Perc M, et al. Determining liquid crystal properties with ordinal networks and machine learning. Chaos, Solitons & Fractals. 2022;154:111607. doi: 10.1016/j.chaos.2021.111607
  • Minor EN, Howard SD, Green AAS, et al. End-to-end machine learning for experimental physics: using simulated data to train a neural network for object detection in video microscopy. Soft Matt. 2020;16(7):1751. doi: 10.1039/C9SM01979K
  • Sigaki HYD, Lenzi EK, Zola RS, et al. Learning physical properties of liquid crystals with deep convolutional neural networks. Sci Rep. 2020;10(1):7664. doi: 10.1038/s41598-020-63662-9
  • Osiecka-Drewniak N, Galewski Z, Juszyńska-Gałązka E. Distinguish focal-conic fan texture of smectic a from focal conic fan texture of smectic B. Cryst. 2023;13(8):1187. doi: 10.3390/cryst13081187
  • Orlikowska H, Sobolewska A, Miniewicz A, et al. Application of the novel dynamic thermo-optical analysis for identification of the sequence of mesophases in thermotropic liquid crystal. Liq Cryst. 2017;44(7):1157–1164. doi: 10.1080/02678292.2016.1269371
  • Piwowarczyk M, Korbecka I, Sokolnicki J, et al. Esters of 4-nitrocinnamic acids and 4-halogene-4’-hydroxyazobenzenes – synthesis, mesogenic and optical studies. Phase Trans. 2019;92(3):217–228. doi: 10.1080/01411594.2018.1563790
  • Pietrzyk S, Yevchenko T, Dardas D, et al. Phase transitions and physical properties by a colour texture analysis: results for liquid crystals. J Mol Liq. 2022;362:119699. doi: 10.1016/j.molliq.2022.119699
  • Betts R, Dierking I. Machine learning classification of polar sub-phases in liquid crystal MHPOBC. Soft Matt. 2023;19(39):7502–7512. doi: 10.1039/D3SM00902E
  • Dierking I, Dominguez J, Harbon J, et al. Classification of liquid crystal textures using convolutional neural networks. Liq Cryst. 2022;50(7–10):1526–1540. doi: 10.1080/02678292.2022.2150790
  • Dierking I, Dominguez J, Harbon J, et al. Testing different supervised machine learning architectures for the classification of liquid crystals. Liq Cryst. 2023;50(7–10):1461–1477. doi: 10.1080/02678292.2023.2221654
  • Drzewicz A, Juszyńska-Gałązka E, Zając W, et al. Non-isothermal and isothermal cold crystallization of glass-forming chiral smectic liquid crystal (S)-4′-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate. J Mol Liq. 2020;319(319):114153. doi: 10.1016/j.molliq.2020.114153
  • Drzewicz A, Jasiurkowska-Delaporte M, Juszyńska-Gałązka E, et al. On the relaxation dynamics of a double glass-forming antiferroelectric liquid crystal. Phys Chem Chem Phys. 2021;23(14):8673. doi: 10.1039/D0CP06203K
  • Jasiurkowska-Delaporte M, Juszyńska E, Ł K, et al. Signatures of glass transition in partially ordered phases. Liq Cryst. 2013;40(10):1436–1442. doi: 10.1080/02678292.2013.828330
  • D’Have K, Rudquist P, Lagerwall ST, et al. Solution of the dark state problem in antiferroelectric liquid crystal displays. Appl Phys Lett. 2000;76(24):3528–3530. doi: 10.1063/1.126696
  • Milewska K, Drzewiński W, Cerwiński M, et al. Design, synthesis and mesomorphic properties of chiral benzoates and fluorobenzoates with direct SmCA*-Iso phase transition. Liq Cryst. 2015;42:1601–1611. doi: 10.1080/02678292.2015.1078916
  • Bradski G. The OpenCV Library. J Soft Tools. 2000;120:122–125.
  • Gulli A, Kapoor A, Pal S. Deep learning with TensorFlow 2 and keras –. 2nd ed. Birmingham (UK): Packt; 2019.
  • Buda M, Maki A, Mazurkowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural Net. 2018;106:249–259. doi: 10.1016/j.neunet.2018.07.011
  • Ou G, Murphey YL. Multi-class pattern classification using neural networks. Pattern Rec. 2007;40(1):4–18. doi: 10.1016/j.patcog.2006.04.041
  • Mazurkwski MA, Habas PA, Zurada JM, et al. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Net. 2008;21(2–3):427–436. doi: 10.1016/j.neunet.2007.12.031
  • Massalska-Arodź M, Janik JA. Fractal-like scaling in liquid crystals. Odd–even effect of scaling exponents in the 4,4′-di- n -alkyloxyazoxybenzene homologous series. Liq Cryst. 1991;10(1):135–140. doi: 10.1080/02678299108028237
  • Dierking I. Liquid crystals, fractals and art. Liq Cryst Tod. 2012;21(3):54–65. doi: 10.1080/1358314X.2012.720515
  • Zhao D, Bu L, Alippi C, et al. A Kolmogorov-Smirnov test to detect changes in stationarity in big data. IFAC. 2017;50(1):14260–14265. doi: 10.1016/j.ifacol.2017.08.1821
  • Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.
  • Goodby JW, Pindak R. Characterization of the hexatic B and crystal B phases by optical microscopy. Mol Cryst Liq Cryst. 1981;75(1):233–247. doi: 10.1080/00268948108073618
  • Wang F, Elbadawi M, Liu Tsilova S, et al. Machine learning to empower electrohydrodynamic processing. Mat Scie Eng C. 2022;132:112553. doi: 10.1016/j.msec.2021.112553
  • Zhou H, Wang R, Wang C. A novel extended local-binary-pattern operator for texture analysis. Inform Scie. 2008;178(22):4314–4325. doi: 10.1016/j.ins.2008.07.015
  • Qian X, Hua XS, Chen P, et al. PLBP: An effective local binary patterns texture descriptor with pyramid representation. Pat Rec. 2011;44(10–11):2502–2515. doi: 10.1016/j.patcog.2011.03.029
  • Dieking I, Dominguez J, Harbon J, et al. Deep learning techniques for the localization and classification of liquid crystal phase transitions. Front Soft Mat. 2022;3:1114551. doi: 10.3389/frsfm.2023.1114551
  • Sigaki HYD, Lenzi EK, Zola RS, et al. Learning physical properties of liquid crystals with deep convolutional neural networks. Scie Rep. 2020;10(1):7664. doi: 10.1038/s41598-020-63662-9
  • Smith AD, Abbott N, Zavala VM. Convolutional network analysis of optical micrographs for liquid crystal sensors. J Phys Chem C. 2020;124(28):15152–15161. doi: 10.1021/acs.jpcc.0c01942
  • Cao Y, Yu H, Abbott NL, et al. Machine learning algorithms for liquid crystal-based sensors. ACS Sens. 2018;3(11):2237–2245. doi: 10.1021/acssensors.8b00100
  • Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Rec. 2018;77:354–377. doi: 10.1016/j.patcog.2017.10.013
  • Jay Kuo CC. Understanding convolutional neural networks with a mathematical model. J Vis Comm Image Rep. 2016;41:406–413. doi: 10.1016/j.jvcir.2016.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.