212
Views
1
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Hollow TiO2/g-C3N4 nanocomposite for photodegradation of volatile organic carbons under visible-light

, , , &
Pages 211-231 | Received 21 Apr 2022, Accepted 03 Oct 2022, Published online: 20 Oct 2022

References

  • Acharya, R., and K. Parida. 2020. “A Review on TiO2/g-C3N4 Visible-Light-Responsive Photocatalysts for Sustainable Energy Generation and Environmental Remediation.” Journal of Environmental Chemical Engineering 8 (4): 103896. doi:10.1016/j.jece.2020.103896.
  • Al Marzouqi, F., B. Al Farsi, A. T. Kuvarega, H. A. J. Al Lawati, S. M. Al Kindy, Y. Kim, and R. Selvaraj. 2019. “Controlled Microwave-Assisted Synthesis of the 2D-BiOCl/2D-g-C3N4 Heterostructure for the Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination.” ACS Omega 4 (3): 4671–4678. doi:10.1021/acsomega.8b03665.
  • Al Marzouqi, F., Y. Kim, and R. Selvaraj. 2019. “Shifting of the Band Edge and Investigation of Charge Carrier Pathways in the CdS/g-C3N4 Heterostructure for Enhanced Photocatalytic Degradation of Levofloxacin.” New Journal of Chemistry 43 (25): 9784–9792. doi:10.1039/C9NJ01782H.
  • Al Marzouqi, F., R. Selvaraj, and Y. Kim. 2020. “Rapid Photocatalytic Degradation of Acetaminophen and Levofloxacin Using g-C3N4 Nanosheets under Solar Light Irradiation.” Materials Research Express 6 (12): 125538. doi:10.1088/2053-1591/ab4e4e.
  • Bakr, A. E. A., W. M. El Rouby, M. D. Khan, A. A. Farghali, B. Xulu, and N. Revaprasadu. 2019. “Synthesis and Characterization of Z-Scheme α-Fe2O3 NTs/Ruptured Tubular g-C3N4 for Enhanced Photoelectrochemical Water Oxidation.” Solar Energy 193: 403–412. doi:10.1016/j.solener.2019.09.052.
  • Bu, Y., and Z. Chen. 2014. “Effect of Oxygen-Doped C3N4 on the Separation Capability of the Photoinduced Electron-Hole Pairs Generated by O-C3N4@TiO2 with Quasi-Shell-Core Nanostructure.” Electrochimica Acta 144: 42–49. doi:10.1016/j.electacta.2014.08.095.
  • Chen, F., Y. Cao, and D. Jia. 2015. “Facile Synthesis of ZnS Nanoparticles and Their Excellent Photocatalytic Performance.” Ceramics International 41 (5): 6645–6652. ‏ doi:10.1016/j.ceramint.2015.01.111.
  • Chen, Pengfei, Lu Chen, Shifeng Ge, Wenqian Zhang, Mengfei Wu, Pingxing Xing, Twum Barimah Rotamond, Hongjun Lin, Ying Wu, and Yiming He. 2020. “Microwave Heating Preparation of Phosphorus Doped g-C3N4 and Its Enhanced Performance for Photocatalytic H2 Evolution in the Help of Ag3PO4 Nanoparticles.” International Journal of Hydrogen Energy 45 (28): 14354–14367. doi:10.1016/j.ijhydene.2020.03.169.
  • Chen, Y., W. Huang, D. He, Y. Situ, and H. Huang. 2014. “Construction of Heterostructured g-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation.” ACS Applied Materials & Interfaces 6 (16): 14405–14414. ‏doi:10.1021/am503674e.
  • Chen, L. Y., and W. D. Zhang. 2014. “In2O3/g-C3N4 Composite Photocatalysts with Enhanced Visible Light Driven Activity.” Applied Surface Science 301: 428–435. ‏ doi:10.1016/j.apsusc.2014.02.093.
  • Feng, Z., L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin, and Y. He. 2020. “In Situ Preparation of g-C3N4/Bi4O5I2 Complex and Its Elevated Photoactivity in Methyl Orange Degradation under Visible Light.” Journal of Environmental Sciences 87: 149–162. doi:10.1016/j.jes.2019.05.032.
  • Ge, L., C. Han, J. Liu, and Y. Li. 2011. “Enhanced Visible Light Photocatalytic Activity of Novel Polymeric g-C3N4 Loaded with Ag Nanoparticles.” Applied Catalysis A: General 409–410: 215–222. doi:10.1016/j.apcata.2011.10.006.
  • Gu, W., F. Lu, C. Wang, S. Kuga, L. Wu, Y. Huang, and M. Wu. 2017. “Face-to-Face Interfacial Assembly of Ultrathin g-C3N4 and Anatase TiO2 Nanosheets for Enhanced Solar Photocatalytic Activity.” ACS Applied Materials & Interfaces 9 (34): 28674–28684. doi:10.1021/acsami.7b10010.
  • Guo, Feng, Lijing Wang, Haoran Sun, Mingyang Li, and Weilong Shi. 2020. “High-Efficiency Photocatalytic Water Splitting by a N-Doped Porous g-C3N4 Nanosheet Polymer Photocatalyst Derived from Urea and N,N-Dimethylformamide.” Inorganic Chemistry Frontiers 7 (8): 1770–1779. doi:10.1039/D0QI00117A.
  • Hao, R., G. Wang, H. Tang, L. Sun, C. Xu, and D. Han. 2016. “Template-Free Preparation of Macro/Mesoporous g-C3N4/TiO2 Heterojunction Photocatalysts with Enhanced Visible Light Photocatalytic Activity.” Applied Catalysis B: Environmental 187: 47–58. doi:10.1016/j.apcatb.2016.01.026.
  • He, Y., J. Cai, T. Li, Y. Wu, H. Lin, L. Zhao, and M. Luo. 2013. “Efficient Degradation of RhB over GdVO4/g-C3N4 Composites under Visible-Light Irradiation.” Chemical Engineering Journal 215–216: 721–730. doi:10.1016/j.cej.2012.11.074.
  • He, Yiming, Lihong Zhang, Maohong Fan, Xiaoxing Wang, Mikel. L. Walbridge, Qingyan Nong, Ying Wu, and Leihong Zhao. 2015. “Z-Scheme SnO2−x/g-C3N4 Composite as an Efficient Photocatalyst for Dye Degradation and Photocatalytic CO2 Reduction.” Solar Energy Materials and Solar Cells 137: 175–184. doi:10.1016/j.solmat.2015.01.037.
  • He, Y., L. Zhang, B. Teng, and M. Fan. 2015. “New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel.” Environmental Science & Technology 49 (1): 649–656. doi:10.1021/es5046309.
  • Jiang, L., X. Yuan, G. Zeng, J. Liang, Z. Wu, and H. Wang. 2018. “Construction of an All-Solid-State Z-Scheme Photocatalyst Based on Graphite Carbon Nitride and Its Enhancement to Catalytic Activity.” Environmental Science: Nano 5 (3): 599–615. doi:10.1039/C7EN01031A.
  • Jiang, Z., X. Zhang, H. S. Chen, X. Hu, and P. Yang. 2019. “Formation of g‐C3N4 Nanotubes towards Superior Photocatalysis Performance.” ChemCatChem 11 (18): 4558–4567. doi:10.1002/cctc.201901038.
  • Liang, L., Y. Cong, F. Wang, L. Yao, and L. Shi. 2019. “Hydrothermal Pre-Treatment Induced Cyanamide to Prepare Porous g-C3N4 with Boosted Photocatalytic Performance.” Diamond and Related Materials 98: 107499. doi:10.1016/j.diamond.2019.107499.
  • Li, Kai, Shanmin Gao, Qingyao Wang, Hui Xu, Zeyan Wang, Baibiao Huang, Ying Dai, and Jun Lu. 2015. “In-Situ-Reduced Synthesis of Ti3+ Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation.” ACS Applied Materials & Interfaces 7 (17): 9023–9030. doi:10.1021/am508505n.
  • Li, J., Y. Liu, H. Li, and C. Chen. 2016. “Fabrication of g-C3N4/TiO2 Composite Photocatalyst with Extended Absorption Wavelength Range and Enhanced Photocatalytic Performance.” Journal of Photochemistry and Photobiology A: Chemistry 317: 151–160. doi:10.1016/j.jphotochem.2015.11.008.
  • Liu, W., L. Qiao, A. Zhu, Y. Liu, and J. Pan. 2017. “Constructing 2D BiOCl/C3N4 Layered Composite with Large Contact Surface for Visible-Light-Driven Photocatalytic Degradation.” Applied Surface Science 426: 897–905. doi:10.1016/j.apsusc.2017.07.225.
  • Li, K., Z. Zeng, L. Yan, M. Huo, Y. Guo, S. Luo, and X. Luo. 2016. “Fabrication of C/X-TiO2@ C3N4 NTs (X = N, F, Cl) Composites by Using Phenolic Organic Pollutants as Raw Materials and Their Visible-Light Photocatalytic Performance in Different Photocatalytic Systems.” Applied Catalysis B: Environmental 187: 269–280. doi:10.1016/j.apcatb.2016.01.046.
  • Lu, X., Q. Wang, and D. Cui. 2010. “Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite.” Journal of Materials Science & Technology 26 (10): 925–930. doi:10.1016/S1005-0302(10)60149-1.
  • Lu, L., G. Wang, M. Zou, J. Wang, and J. Li. 2018. “Effects of Calcining Temperature on Formation of Hierarchical TiO2/g-C3N4 Hybrids as an Effective Z-Scheme Heterojunction Photocatalyst.” Applied Surface Science 441: 1012–1023. doi:10.1016/j.apsusc.2018.02.080.
  • Lu, Changhai, Peng Zhang, Shujuan Jiang, Xi Wu, Shaoqing Song, Mingshan Zhu, Zaizhu Lou, et al. 2017. “Photocatalytic Reduction Elimination of UO22+ Pollutant under Visible Light with Metal-Free Sulfur Doped g-C3N4 Photocatalyst.” Applied Catalysis B: Environmental 200: 378–385. doi:10.1016/j.apcatb.2016.07.036.
  • Muniz, F. T. L., M. A. R. Miranda, C. Morilla dos Santos, and J. M. Sasaki. 2016. “The Scherrer Equation and the Dynamical Theory of X-Ray Diffraction.” Acta Crystallographica. Section A, Foundations and Advances 72 (Pt 3): 385–390. doi:10.1107/S205327331600365X.
  • Papailias, I., N. Todorova, T. Giannakopoulou, J. Yu, D. Dimotikali, and C. Trapalis. 2017. “Photocatalytic Activity of Modified g-C3N4/TiO2 Nanocomposites for NOx Removal.” Catalysis Today 280: 37–44. doi:10.1016/j.cattod.2016.06.032.
  • Pattnaik, S. P., A. Behera, S. Martha, R. Acharya, and K. Parida. 2019. “Facile Synthesis of Exfoliated Graphitic Carbon Nitride for Photocatalytic Degradation of Ciprofloxacin under Solar Irradiation.” Journal of Materials Science 54 (7): 5726–5742. doi:10.1007/s10853-018-03266-x.
  • Peng, W. C., and X. Y. Li. 2014. “Synthesis of MoS2/g-C3N4 as a Solar Light-Responsive Photocatalyst for Organic Degradation.” Catalysis Communications 49: 63–67. doi:10.1016/j.catcom.2014.02.008.
  • Pham, T. D., and B. K. Lee. 2017. “Selective Removal of Polar VOCs by Novel Photocatalytic Activity of Metals Co-Doped TiO2/PU under Visible Light.” Chemical Engineering Journal 307: 63–73. doi:10.1016/j.cej.2016.08.068.
  • Qingbo, Y., K. Yang, H. Li, and X. Li. 2021. “Z-Scheme α-Fe2O3/g-C3N4 with the FeOC Bond toward Enhanced Photocatalytic Degradation.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 616: 126269. doi:10.1016/j.colsurfa.2021.126269.
  • Ren, Y., D. Zeng, and W. J. Ong. 2019. “Interfacial Engineering of Graphitic Carbon Nitride (g-C3N4)-Based Metal Sulfide Heterojunction Photocatalysts for Energy Conversion: A Review.” Chinese Journal of Catalysis 40 (3): 289–319. doi:10.1016/S1872-2067(19)63293-6.
  • Song, G., C. Luo, Q. Fu, and C. Pan. 2016. “Hydrothermal Synthesis of the Novel Rutile-Mixed Anatase TiO2 Nanosheets with Dominant {001} Facets for High Photocatalytic Activity.” RSC Advances 6 (87): 84035–84041. doi:10.1039/C6RA17665H.
  • Su, Yuehan, Ping Chen, Fengliang Wang, Qianxin Zhang, Tiansheng Chen, Yingfei Wang, Kun Yao, Wenying Lv, and Guoguang Liu. 2017. “Decoration of TiO2/gC3N4 Z-Scheme by Carbon Dots as a Novel Photocatalyst with Improved Visible-Light Photocatalytic Performance for the Degradation of Enrofloxacin.” RSC Advances 7 (54): 34096–34103. doi:10.1039/C7RA05485H.
  • Tauc, J., R. Grigorovici, and A. Vancu. 1966. “Optical Properties and Electronic Structure of Amorphous Germanium.” Physica Status Solidi (B) 15 (2): 627–637. doi:10.1002/pssb.19660150224.
  • Tong, Z., D. Yang, T. Xiao, Y. Tian, and Z. Jiang. 2015. “Biomimetic Fabrication of g-C3N4/TiO2 Nanosheets with Enhanced Photocatalytic Activity toward Organic Pollutant Degradation.” Chemical Engineering Journal 260: 117–125. doi:10.1016/j.cej.2014.08.072.
  • Wang, Fengliang, Yiping Feng, Ping Chen, Yingfei Wang, Yuehan Su, Qianxin Zhang, Yongqin Zeng, et al. 2018. “Photocatalytic Degradation of Fluoroquinolone Antibiotics Using Ordered Mesoporous g-C3N4 under Simulated Sunlight Irradiation: kinetics, Mechanism, and Antibacterial Activity Elimination.” Applied Catalysis B: Environmental 227: 114–122. doi:10.1016/j.apcatb.2018.01.024.
  • Wang, Y., R. Shi, J. Lin, and Y. Zhu. 2011. “Enhancement of Photocurrent and Photocatalytic Activity of ZnO Hybridized with Graphite-like C3N4.” Energy & Environmental Science 4 (8): 2922–2929. doi:10.1039/c0ee00825g.
  • Xu, Y., and M. A. Schoonen. 2000. “The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals.” American Mineralogist 85 (3–4): 543–556. doi:10.2138/am-2000-0416.
  • Yang, Yichang, Xingang Liu, Jun Zheng, Qinwen Tan, Miao Feng, Yu Qu, Junling An, and Nianliang Cheng. 2019. “Characteristics of One-Year Observation of VOCs, NOx, and O3 at an Urban Site in Wuhan.” Journal of Environmental Sciences 79: 297–310. doi:10.1016/j.jes.2018.12.002.
  • Yu, J. G., H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho. 2003. “The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition.” The Journal of Physical Chemistry B 107 (50): 13871–13879. doi:10.1021/jp036158y.
  • Zhang, Qingle, Pengfei Chen, Lu Chen, Mengfei Wu, Xiaoquan Dai, Pingxing Xing, Hongjun Lin, Leihong Zhao, and Yiming He. 2020. “Facile Fabrication of Novel Ag2S/Kg-C3N4 Composite and Its Enhanced Performance in Photocatalytic H2 Evolution.” Journal of Colloid and Interface Science 568: 117–129. doi:10.1016/j.jcis.2020.02.054.
  • Zhang, X., B. Gao, A. E. Creamer, C. Cao, and Y. Li. 2017. “Adsorption of VOCs onto Engineered Carbon Materials: A Review.” Journal of Hazardous Materials 338: 102–123. doi:10.1016/j.jhazmat.2017.05.013.
  • Zhang, Lin, Dengwei Jing, Xilin She, Hongwei Liu, Dongjiang Yang, Yun Lu, Jian Li, Zhanfeng Zheng, and Liejin Guo. 2014. “Heterojunctions in gC3N4/TiO2 (B) nanofibres with Exposed (001) Plane and Enhanced Visible-Light Photoactivity.” Journal of Materials Chemistry A 2 (7): 2071–2078. doi:10.1039/C3TA14047D.
  • Zhang, Jinshui, Jianhua Sun, Kazuhiko Maeda, Kazunari Domen, Ping Liu, Markus Antonietti, Xianzhi Fu, and Xinchen Wang. 2011. “Sulfur-Mediated Synthesis of Carbon Nitride: band-Gap Engineering and Improved Functions for Photocatalysis.” Energy & Environmental Science 4 (3): 675–678. doi:10.1039/C0EE00418A.
  • Zhang, Y., M. Wu, Y. H. Kwok, Y. Wang, W. Zhao, X. Zhao, H. Huang, and D. Y. C. Leung 2019. “In-Situ Synthesis of Heterojunction TiO2/MnO2 Nanostructure with Excellent Performance in Vacuum Ultraviolet Photocatalytic Oxidation of Toluene.” Applied Catalysis B: Environmental 259: 118034. doi:10.1016/j.apcatb.2019.118034.
  • Zhang, Yuanwen, Jingsan Xu, Jun Mei, Sarina Sarina, Ziyang Wu, Ting Liao, Cheng Yan, and Ziqi Sun. 2020. “Strongly Interfacial-Coupled 2D-2D TiO2/g-C3N4 Heterostructure for Enhanced Visible-Light Induced Synthesis and Conversion.” Journal of Hazardous Materials 394: 122529. doi:10.1016/j.jhazmat.2020.122529.
  • Zheng, Y., L. Lin, B. Wang, and X. Wang. 2015. “Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis.” Angewandte Chemie (International ed. in English) 54 (44): 12868–12884. doi:10.1002/anie.201501788.
  • Zhou, Ke, Weiwu Ma, Zheng Zeng, Xiancheng Ma, Xiang Xu, Yang Guo, Hailong Li, and Liqing Li. 2019. “Experimental and DFT Study on the Adsorption of VOCs on Activated Carbon/Metal Oxides Composites.” Chemical Engineering Journal 372: 1122–1133. doi:10.1016/j.cej.2019.04.218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.