265
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Rapid assessment of jet engine-like soot from combustion of conventional and sustainable aviation fuels using flame spray pyrolysis

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 595-609 | Received 15 Sep 2023, Accepted 24 Jan 2024, Published online: 09 Apr 2024

References

  • Abegglen, M., L. Durdina, B. Brem, J. Wang, T. Rindlisbacher, J. Corbin, U. Lohmann, and B. Sierau. 2015. Effective density and mass–mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size. J. Aerosol Sci. 88:135–47. doi:10.1016/j.jaerosci.2015.06.003.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. JGR. Atmospheres 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Chan, T. W., P. Canteenwalla, and W. A. Chishty. 2017. Characterization of fuel composition and altitude impact on gaseous and particle emissions from a turbojet engine. Paper presented at the Turbo Expo: Power for Land, Sea, and Air, V04AT04A007, American Society of Mechanical Engineers. doi:10.1115/GT2017-63131.
  • Chan, T. W., W. A. Chishty, P. Canteenwalla, D. Buote, and C. R. Davison. 2015. Characterization of emissions from the use of alternative aviation fuels. Paper presented at the Turbo Expo: Power for Land, Sea, and Air, V04AT04A012, American Society of Mechanical Engineers. doi:10.1115/GT2015-42122.
  • Chan, T. W., W. Chishty, C. Davison, and D. Buote. 2015. Characterization of the ultrafine and black carbon emissions from different aviation alternative fuels. SAE Int. J. Fuels Lubr. 8 (3):515–26. doi:10.4271/2015-01-2562.
  • Colket, M., J. Heyne, M. Rumizen, M. Gupta, T. Edwards, W. M. Roquemore, G. Andac, R. Boehm, J. Lovett, R. Williams, et al. 2017. Overview of the national jet fuels combustion program. AiAA Journal 55 (4):1087–104. doi:10.2514/1.J055361.
  • Corbin, J. C., T. J. Johnson, F. Liu, T. A. Sipkens, M. P. Johnson, P. Lobo, and G. J. Smallwood. 2022. Size-dependent mass absorption cross-section of soot particles from various sources. Carbon 192:438–51. doi:10.1016/j.carbon.2022.02.037.
  • Daoudi, M., P. Schiffmann, A. Faccinetto, A. Frobert, and P. Desgroux. 2023. Comprehensive characterization of particulate matter emissions produced by a liquid-fueled minicast burner. Aerosol Sci. Technol. 57 (9):872–89. doi:10.1080/02786826.2023.2228372.
  • Dastanpour, R., J. M. Boone, and S. N. Rogak. 2016. Automated primary particle sizing of nanoparticle aggregates by TEM image analysis. Powder Technol 295:218–24. doi:10.1016/j.powtec.2016.03.027.
  • Dickau, M., T. J. Johnson, K. Thomson, G. Smallwood, and J. S. Olfert. 2015. Demonstration of the CPMA-electrometer system for calibrating black carbon particulate mass instruments. Aerosol Sci. Technol. 49 (3):152–8. doi:10.1080/02786826.2015.1010033.
  • Dreyer, J. A., M. Poli, N. A. Eaves, M. L. Botero, J. Akroyd, S. Mosbach, and M. Kraft. 2019. Evolution of the soot particle size distribution along the centre line of an n-heptane/toluene co-flow diffusion flame. Combust. Flame 209:256–66. doi:10.1016/j.combustflame.2019.08.002.
  • Durdina, L., P. Lobo, M. B. Trueblood, E. A. Black, S. Achterberg, D. E. Hagen, B. T. Brem, and J. Wang. 2016. Response of real-time black carbon mass instruments to mini-cast soot. Aerosol Sci. Technol. 50 (9):906–18. doi:10.1080/02786826.2016.1204423.
  • Elser, M., B. T. Brem, L. Durdina, D. Schönenberger, F. Siegerist, A. Fischer, and J. Wang. 2019. Chemical composition and radiative properties of nascent particulate matter emitted by an aircraft turbofan burning conventional and alternative fuels. Atmos. Chem. Phys. 19 (10):6809–20. doi:10.5194/acp-19-6809-2019.
  • Ernst, F. O., R. Büchel, R. Strobel, and S. E. Pratsinis. 2008. One-step flame-synthesis of carbon-embedded and-supported platinum clusters. Chem. Mater. 20 (6):2117–23. doi:10.1021/cm702023n.
  • Ghazi, R., H. Tjong, A. Soewono, S. N. Rogak, and J. S. Olfert. 2013. Mass, mobility, volatility, and morphology of soot particles generated by a Mckenna and inverted burner. Aerosol Sci. Technol. 47 (4):395–405. doi:10.1080/02786826.2012.755259.
  • Goudeli, E., A. J. Gröhn, and S. E. Pratsinis. 2016. Sampling and dilution of nanoparticles at high temperature. Aerosol. Sci. Technol. 50 (6):591–604. doi:10.1080/02786826.2016.1168922.
  • Goudeli, E., M. L. Eggersdorfer, and S. E. Pratsinis. 2015. Coagulation–agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir 31 (4):1320–7. doi:10.1021/la504296z.
  • Heine, M. C., L. Mädler, R. Jossen, and S. E. Pratsinis. 2006. Direct measurement of entrainment during nanoparticle synthesis in spray flames. Combust. Flame 144 (4):809–20. doi:10.1016/j.combustflame.2005.09.012.
  • ICAO. 2023. Annex 16 – environmental protection – volume ii – aircraft engine emissions.
  • Jacob, S. D., and T. Rindlisbacher. 2019. Chapter 3: Local air quality, in 2019 environmental report: Aviation and environment, 100–9. ICAO.
  • Kazemimanesh, M., A. Moallemi, K. Thomson, G. Smallwood, P. Lobo, and J. S. Olfert. 2019. A novel miniature inverted-flame burner for the generation of soot nanoparticles. Aerosol Sci. Technol. 53 (2):184–95. doi:10.1080/02786826.2018.1556774.
  • Kelesidis, G. A., D. Neubauer, L.-S. Fan, U. Lohmann, and S. E. Pratsinis. 2022. Enhanced light absorption and radiative forcing by black carbon agglomerates. Environ. Sci. Technol. 56 (12):8610–8. doi:10.1021/acs.est.2c00428.
  • Kelesidis, G. A., E. Goudeli, and S. E. Pratsinis. 2017. Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth. Carbon 121:527–35. doi:10.1016/j.carbon.2017.06.004.
  • Kelesidis, G. A., M. R. Kholghy, J. Zuercher, J. Robertz, M. Allemann, A. Duric, and S. E. Pratsinis. 2020. Light scattering from nanoparticle agglomerates. Powder Technol. 365:52–9. doi:10.1016/j.powtec.2019.02.003.
  • Kholghy, M. R., and V. G. DeRosa. 2021. Morphology, composition and optical properties of jet engine-like soot made by a spray flame. Combust. Flame 231:111480. doi:10.1016/j.combustflame.2021.111480.
  • Kinsey, J. S., R. Giannelli, R. Howard, B. Hoffman, R. Frazee, M. Aldridge, C. Leggett, K. Stevens, D. Kittelson, W. Silvis, et al. 2021. Assessment of a regulatory measurement system for the determination of the non-volatile particulate matter emissions from commercial aircraft engines. J. Aerosol Sci. 154:1–16. doi:10.1016/j.jaerosci.2020.105734.
  • Landgrebe, J. D., and S. E. Pratsinis. 1990. A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interface Sci. 139 (1):63–86. doi:10.1016/0021-9797(90)90445-T.
  • Lee, D. S., D. W. Fahey, A. Skowron, M. R. Allen, U. Burkhardt, Q. Chen, S. J. Doherty, S. Freeman, P. M. Forster, J. Fuglestvedt, et al. 2021. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos Environ 244:117834. doi:10.1016/j.atmosenv.2020.117834.
  • Liu, F., J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbin. 2020. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54 (1):33–51. doi:10.1080/02786826.2019.1676878.
  • Mädler, L., H. K. Kammler, R. Mueller, and S. E. Pratsinis. 2002. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33 (2):369–89. doi:10.1016/S0021-8502(01)00159-8.
  • Malmborg, V. B., A. C. Eriksson, S. Török, Y. Zhang, K. Kling, J. Martinsson, E. C. Fortner, L. Gren, S. Kook, T. B. Onasch, et al. 2019. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon 142:535–46. doi:10.1016/j.carbon.2018.10.072.
  • Maricq, M. M. 2007. Coagulation dynamics of fractal-like soot aggregates. J. Aerosol Sci. 38 (2):141–56. doi:10.1016/j.jaerosci.2006.11.004.
  • Narik, V. S., S. Szopa, B. Adhikary, P. Artaxo, T. Bernsten, W. D. Collins, S. Fuzzi, L. Gallardo, A. K. Scharr, Z. Klimont, et al. 2021. Short-lived climate forcers, in climate change 2021: The physical science basis. Contribution of working group 1 to the sixth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press.
  • Olfert, J. S., and S. N. Rogak. 2019. Universal relations between soot effective density and primary particle size for common combustion sources. Aerosol Sci. Technol. 53 (5):485–92. doi:10.1080/02786826.2019.1577949.
  • Patey, T. J., R. Büchel, S. Ng, F. Krumeich, S. E. Pratsinis, and P. Novák. 2009. Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries. J. Power Sources 189 (1):149–54. doi:10.1016/j.jpowsour.2008.10.002.
  • Rodhe, H., C. Persson, and O. Akesson. 1972. An investigation into regional transport of soot and sulfate aerosols. Atmos. Environ. 6 (9):675–93. doi:10.1016/0004-6981(72)90025-x.
  • Rodriguez-Fernandez, H., S. Dasappa, K. D. Sabado, and J. Camacho. 2021. Production of carbon black in turbulent spray flames of coal tar distillates. Appl. Sci. 11 (21):10001. doi:10.3390/app112110001.
  • Rogak, S. N., R. C. Flagan, and H. V. Nguyen. 1993. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18 (1):25–47. doi:10.1080/02786829308959582.
  • SAE. 2018. Procedure for the continuous sampling and measurement of non-volatile particulate matter emissions from aircraft turbine engines (SAE arp6320). Warrendale, PA, USA.
  • Saffaripour, M., K. A. Thomson, G. J. Smallwood, and P. Lobo. 2020. A review on the morphological properties of non-volatile particulate matter emissions from aircraft turbine engines. J. Aerosol Sci. 139:105467. doi:10.1016/j.jaerosci.2019.105467.
  • Schripp, T., B. E. Anderson, U. Bauder, B. Rauch, J. C. Corbin, G. J. Smallwood, P. Lobo, E. C. Crosbie, M. A. Shook, R. C. Miake-Lye, et al. 2022. Aircraft engine particulate matter emissions from sustainable aviation fuels: Results from ground-based measurements during the nasa/dlr campaign eclif2/nd-max. Fuel 325:124764. doi:10.1016/j.fuel.2022.124764.
  • Schumann, U. 1993. On the effect of emissions from aircraft engines on the state of the atmosphere: Inst. Für Physik der Atmosphäre.
  • Senaratne, A., J. Olfert, G. Smallwood, F. Liu, P. Lobo, and J. C. Corbin. 2023. Size and light absorption of miniature-inverted-soot-generator particles during operation with various fuel mixtures. J. Aerosol Sci. 170:106144. doi:10.1016/j.jaerosci.2023.106144.
  • Sipkens, T. A., A. Boies, J. C. Corbin, R. K. Chakrabarty, J. Olfert, and S. N. Rogak. 2023a. Overview of methods to characterize the mass, size, and morphology of soot. J. Aerosol Sci. 173:106211. doi:10.1016/j.jaerosci.2023.106211.
  • Sipkens, T. A., and S. N. Rogak. 2021. Using k-means to identify soot aggregates in transmission electron microscopy images. J. Aerosol Sci. 152:105699. doi:10.1016/j.jaerosci.2020.105699.
  • Sipkens, T. A., M. Frei, A. Baldelli, P. Kirchen, F. E. Kruis, and S. N. Rogak. 2021. Characterizing soot in tem images using a convolutional neural network. Powder Technol 387:313–24. doi:10.1016/j.powtec.2021.04.026.
  • Sipkens, T. A., T. Johnson, R. Nishida, G. J. Smallwood, and J. C. Corbin. 2023b. Simplified approaches to estimate the output of particle mass analyzers paired with unipolar chargers. J. Aerosol Sci. 173:106195. doi:10.1016/j.jaerosci.2023.106195.
  • Symonds, J. P., K. S. J. Reavell, and J. S. Olfert. 2013. The CPMA-electrometer system—a suspended particle mass concentration standard. Aerosol Sci. Technol. 47 (8):i–iv. doi:10.1080/02786826.2013.801547.
  • Takegawa, N., Y. Murashima, A. Fushimi, K. Misawa, Y. Fujitani, K. Saitoh, and H. Sakurai. 2021. Characteristics of sub-10 nm particle emissions from in-use commercial aircraft observed at narita international airport. Atmos. Chem. Phys. 21 (2):1085–104. doi:10.5194/acp-21-1085-2021.
  • Tan, Y. R., M. Salamanca, L. Pascazio, J. Akroyd, and M. Kraft. 2021. The effect of poly (oxymethylene) dimethyl ethers (pode3) on soot formation in ethylene/pode3 laminar coflow diffusion flames. Fuel 283:118769. doi:10.1016/j.fuel.2020.118769.
  • Trivanovic, U., G. A. Kelesidis, and S. E. Pratsinis. 2022. High-throughput generation of aircraft-like soot. Aerosol Sci. Technol. 56 (8):732–43. doi:10.1080/02786826.2022.2070055.
  • Trivanovic, U., T. A. Sipkens, M. Kazemimanesh, A. Baldelli, A. M. Jefferson, B. M. Conrad, M. R. Johnson, J. C. Corbin, J. S. Olfert, and S. N. Rogak. 2020. Morphology and size of soot from gas flares as a function of fuel and water addition. Fuel 279:118478. doi:10.1016/j.fuel.2020.118478.
  • Vemury, S., and S. E. Pratsinis. 1995. Self-preserving size distributions of agglomerates. J. Aerosol Sci. 26 (2):175–85. doi:10.1016/0021-8502(94)00103-6.
  • Zhang, C., T. Thajudeen, C. Larriba, T. E. Schwartzentruber, and C. J. Hogan. 2012. Determination of the scalar friction factor for nonspherical particles and aggregates across the entire Knudsen number range by direct simulation Monte Carlo (DSMC). Aerosol Sci. Technol. 46 (10):1065–78. doi:10.1080/02786826.2012.690543.
  • Zhang, L., T. L. Butler, and B. Yang. 2020. Recent trends, opportunities and challenges of sustainable aviation fuel. In Green energy to sustainability: Strategies for global industries, 85–110. Wiley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.