106
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of heating power and nicotine concentration on aerosol size distribution of a vaping device

, , , , &
Pages 706-718 | Received 15 Dec 2023, Accepted 14 Feb 2024, Published online: 01 Mar 2024

References

  • Alderman, S. L., C. Song, S. C. Moldoveanu, and S. K. Cole. 2015. Particle size distribution of e-cigarette aerosols and the relationship to Cambridge filter pad collection efficiency. Contrib. Tob. Nicotine Res. 26:183–90.
  • Baassiri, M., S. Talih, R. Salman, N. Karaoghlanian, R. Saleh, R. El Hage, N. Saliba, and A. Shihadeh. 2017. Clouds and “throat hit”: Effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols. Aerosol Sci. Technol. 51 (11):1231–9. doi: 10.1080/02786826.2017.1341040.
  • Behar, R. Z., W. Luo, K. J. McWhirter, J. F. Pankow, and P. Talbot. 2018. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 8 (1):8288. doi: 10.1038/s41598-018-25575-6.
  • Bertrand, P., V. Bonnarme, A. Piccirilli, P. Ayrault, L. Lemée, G. Frapper, and J. Pourchez. 2018. Physical and chemical assessment of 1,3 Propanediol as a potential substitute of propylene glycol in refill liquid for electronic cigarettes. Sci. Rep. 8 (1):10702. doi: 10.1038/s41598-018-29066-6.
  • Brown, C. J., and J. M. Cheng. 2014. Electronic cigarettes: Product characterisation and design considerations. Tob. Control. 23 (Suppl 2):ii4–10. doi: 10.1136/tobaccocontrol-2013-051476.
  • Casebolt, R., S. J. Cook, A. Islas, A. Brown, K. Castle, and D. D. Dutcher. 2020. Carbon monoxide concentration in mainstream E-cigarette emissions measured with diode laser spectroscopy. Tob. Control. 29 (6):652–5. doi: 10.1136/tobaccocontrol-2019-055078.
  • Dalrymple, A., P. Ordoñez, D. Thorne, D. Walker, O. M. Camacho, A. Büttner, D. Dillon, and C. Meredith. 2016. Cigarette smoke induced genotoxicity and respiratory tract pathology: Evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhal. Toxicol. 28 (7):324–38. doi: 10.3109/08958378.2016.1170911.
  • Ebersole, J., V. Samburova, Y. Son, D. Cappelli, C. Demopoulos, A. Capurro, A. Pinto, B. Chrzan, K. Kingsley, K. Howard, et al. 2020. Harmful chemicals emitted from electronic cigarettes and potential deleterious effects in the oral cavity. Tob. Induc. Dis. 18 (May):41. doi: 10.18332/tid/116988.
  • Farsalinos, K. E., G. Romagna, D. Tsiapras, S. Kyrzopoulos, and V. Voudris. 2013. Evaluation of electronic cigarette use (vaping) topography and estimation of liquid consumption: Implications for research protocol standards definition and for public health authorities’ regulation. Int. J. Environ. Res. Public Health. 10 (6):2500–14. doi: 10.3390/ijerph10062500.
  • Floyd, E. L., L. Queimado, J. Wang, J. L. Regens, and D. L. Johnson. 2018. Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PLoS One. 13 (12):e0210147. doi: 10.1371/journal.pone.0210147.
  • Fuoco, F. C., G. Buonanno, L. Stabile, and P. Vigo. 2014. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut. 184:523–9. doi: 10.1016/j.envpol.2013.10.010.
  • Gillman, I. G., K. A. Kistler, E. W. Stewart, and A. R. Paolantonio. 2016. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 75:58–65. doi: 10.1016/j.yrtph.2015.12.019.
  • Heyder, J., J. Gebhart, G. Rudolf, C. F. Schiller, and W. Stahlhofen. 1986. Deposition of particles in the human respiratory tract in the size range 0.005–15 µm. J. Aerosol Sci. 17 (5):811–25. doi: 10.1016/0021-8502(86)90035-2.
  • Hinds, W. C. 1982. Optical properties. In Aerosol technology: Properties, behavior, and measurement of airborne particles, 315–46. New York: John Wiley and Sons.
  • Huang, C.-H. 2005. Predicting cutoff aerodynamic diameter and sharpness of single round nozzle impactors with a finite impaction plate diameter. J. Air Waste Manag. Assoc. 55 (12):1858–65. doi: 10.1080/10473289.2005.10464774.
  • Jiang, H., X. Gao, Y. Gao, and Y. Liu. 2023. Current knowledge and challenges of particle size measurements of mainstream e-cigarette aerosols and their implication on respiratory dosimetry. JoR. 3 (1):7–28. doi: 10.3390/jor3010003.
  • Kane, D. B., and W. Li. 2021. Particle size measurement of electronic cigarette aerosol with a cascade impactor. Aerosol Sci. Technol. 55 (2):205–14. doi: 10.1080/02786826.2020.1849536.
  • Ko, T.-J., and S. A. Kim. 2022. Effect of heating on physicochemical property of aerosols during vaping. Int. J. Environ. Res. Public Health. 19 (3):1892. doi: 10.3390/ijerph19031892.
  • Lalo, H., L. Leclerc, J. Sorin, and J. Pourchez. 2020. Aerosol droplet-size distribution and airborne nicotine portioning in particle and gas phases emitted by electronic cigarettes. Sci. Rep. 10 (1):21707. doi: 10.1038/s41598-020-78749-6.
  • Lechasseur, A., S. Altmejd, N. Turgeon, G. Buonanno, L. Morawska, D. Brunet, C. Duchaine, and M. C. Morissette. 2019. Variations in coil temperature/power and e-liquid constituents change size and lung deposition of particles emitted by an electronic cigarette. Physiol. Rep. 7 (10):e14093. doi: 10.14814/phy2.14093.
  • Lerner, C. A., I. K. Sundar, R. M. Watson, A. Elder, R. Jones, D. Done, R. Kurtzman, D. J. Ossip, R. Robinson, S. McIntosh, et al. 2015. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols. Environ. Pollut. 198:100–7. doi: 10.1016/j.envpol.2014.12.033.
  • Li, L., E. S. Lee, C. Nguyen, and Y. Zhu. 2020. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Technol. 54 (11):1270–81. doi: 10.1080/02786826.2020.1771270.
  • Liu, L., G. Shuo, J. Chen, Z. Wang, W. Du, and B. Li. 2022. Density and surface tension of binary mixtures of 1, 2-propylene glycol and glycerol under atmospheric pressure from 303.15 K to 393.15 K and correlating with the Jouyban–Acree model. Phys. Chem. Liq. 60 (5):682–95. doi: 10.1080/00319104.2022.2032053.
  • Marini, S., G. Buonanno, L. Stabile, and G. Ficco. 2014. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide. Toxicol. Appl. Pharmacol. 278 (1):9–15. doi: 10.1016/j.taap.2014.04.004.
  • Marques, P., L. Piqueras, and M.-J. Sanz. 2021. An updated overview of e-cigarette impact on human health. Respir. Res. 22 (1):151. doi: 10.1186/s12931-021-01737-5.
  • Meišutovič-Akhtarieva, M., T. Prasauskas, D. Čiužas, V. Kaunelienė, and D. Martuzevičius. 2021. The dynamics of exhaled aerosol following the usage of heated tobacco product, electronic cigarette, and conventional cigarette. Aerosol Air Qual. Res. 21 (8):200653. doi: 10.4209/aaqr.200653.
  • Pourchez, J., S. Parisse, G. Sarry, S. Perinel-Ragey, J.-M. Vergnon, A. Clotagatide, and N. Prévôt. 2018. Impact of power level and refill liquid composition on the aerosol output and particle size distribution generated by a new-generation e-cigarette device. Aerosol Sci. Technol. 52 (4):359–69. doi: 10.1080/02786826.2017.1422857.
  • Protano, C., P. Avino, M. Manigrasso, V. Vivaldi, F. Perna, F. Valeriani, and M. Vitali. 2018. Environmental electronic vape exposure from four different generations of electronic cigarettes: Airborne particulate matter levels. Int. J. Environ. Res. Public Health. 15 (10):2172. doi: 10.3390/ijerph15102172.
  • Ranpara, A., A. B. Stefaniak, E. Fernandez, and R. F. LeBouf. 2021. Effect of puffing behavior on particle size distributions and respiratory depositions from pod-style electronic cigarette, or vaping, products. Front. Public Health. 9:750402. doi: 10.3389/fpubh.2021.750402.
  • Son, Y., G. Mainelis, C. Delnevo, O. A. Wackowski, S. Schwander, and Q. Meng. 2020. Investigating e-cigarette particle emissions and human airway depositions under various e-cigarette-use conditions. Chem. Res. Toxicol. 33 (2):343–52. doi: 10.1021/acs.chemrestox.9b00243.
  • Sousan, S., J. Pender, D. Streuber, M. Haley, W. Shingleton, and E. Soule. 2022. Laboratory determination of gravimetric correction factors for real-time area measurements of electronic cigarette aerosols. Aerosol Sci. Technol. 56 (6):517–29. doi: 10.1080/02786826.2022.2047152.
  • Stefaniak, A. B., A. C. Ranpara, M. A. Virji, and R. F. LeBouf. 2022. Influence of e-liquid humectants, nicotine, and flavorings on aerosol particle size distribution and implications for modeling respiratory deposition. Front. Public Health. 10:782068. doi: 10.3389/fpubh.2022.782068.
  • Sundahl, M., E. Berg, and M. Svensson. 2017. Aerodynamic particle size distribution and dynamic properties in aerosols from electronic cigarettes. J. Aerosol Sci. 103:141–50. doi: 10.1016/j.jaerosci.2016.10.009.
  • Zhao, J., G. Pyrgiotakis, and P. Demokritou. 2016. Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhal. Toxicol. 28 (14):658–69. doi: 10.1080/08958378.2016.1246628.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.