448
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of an openable small cyclone for atmospheric particulate matter sampling for toxicological experiments

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 681-693 | Received 05 Dec 2023, Accepted 11 Feb 2024, Published online: 08 Mar 2024

References

  • Alessandria, L., T. Schilirò, R. Degan, D. Traversi, and G. Gilli. 2014. Cytotoxic response in human lung epithelial cells and ion characteristics of urban-air particles from Torino, a northern Italian city. Environ. Sci. Pollut. Res. Int. 21 (8):5554–64. doi: 10.1007/s11356-013-2468-1.
  • Alimov, Z. B., H. Youn, A. Iwata, K. Nakano, T. Okamoto, A. Sasaki, T. Katori, and T. Okuda. 2022. Comparison of the chemical characteristics and toxicity of PM2.5 collected using different sizes of cyclones. Asian J. Atmos. Environ. 16 (3):103–21. doi: 10.5572/ajae.2022.062.
  • Azadi, M., M. Azadi, and A. Mohebbi. 2010. A CFD study of the effect of cyclone size on its performance parameters. J. Hazard. Mater. 182 (1–3):835–41. doi: 10.1016/j.jhazmat.2010.06.115.
  • Brar, L. S., R. P. Sharma, and K. Elsayed. 2015. The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technol. 286:668–77. doi: 10.1016/j.powtec.2015.09.003.
  • Brook, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, et al. 2010. Particulate matter air pollution and cardiovascular disease. Circulation 121 (21):2331–78. doi: 10.1161/CIR.0b013e3181dBece1.
  • Cavanagh, J.-A E., K. Trought, L. Brown, and S. Duggan. 2009. Exploratory investigation of the chemical characteristics and relative toxicity of ambient air particulates from two New Zealand cities. Sci. Total Environ. 407 (18):5007–18. doi: 10.1016/j.scitotenv.2009.05.020.
  • Calvo, A. I., C. Alves, A. Castro, V. Pont, A. M. Vicente, and R. Fraile. 2013. Research on aerosol sources and chemical composition: Past current, and emerging issues. Atmos. Res. 120–121:1–28. doi: 10.1016/j.atmosres.2012.09.021.
  • Cohen, A. J., M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 389 (10082):1907–18. doi: 10.1016/S0140-6736(17)30505-6.
  • Dockery, D. W., and C. A. Pope. 1994. Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health. 15 (1):107–32. doi: 10.1146/annurev.pu.15.050194.000543.
  • Fu, P.-B., F. Wang, X.-J. Yang, L. Ma, X. Cui, and H.-L. Wang. 2017. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation. Environ. Sci. Technol. 51 (3):1587–94. doi: 10.1021/acs.est.6b04418.
  • Heo, J., D. S. Antkiewicz, M. M. Shafer, D. A. Perkins, C. Sioutas, and J. J. Schauer. 2015. Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal. Bioanal. Chem. 407 (20):5953–63. doi: 10.1007/s00216-015-8749-4.
  • Hinds, W. C. 1982. Aerosol technology. New York: John Wiley & Sons, Inc.
  • Hoek, G., R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, and J. D. Kaufman. 2013. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 12 (1):43. doi: 10.1186/1476-069X-12-43.
  • Honda, A., T. Okuda, M. Nagao, N. Miyasaka, M. Tanaka, and H. Takano. 2021. PM2. 5 collected using cyclonic separation causes stronger biological responses than that collected using a conventional filtration method. Environ. Res. 198:110490. doi: 10.1016/j.envres.2020.110490.
  • Iozia, D. L., and D. Leith. 1990. The logistic function and cyclone fractional efficiency. Aerosol. Sci. Technol. 12 (3):598–606. doi: 10.1080/02786829008959373.
  • Kim, J. H., G. W. Mulholland, S. R. Kukuck, and D. Y. Pui. 2005. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110 (1):31–54. doi: 10.6028/jres.110.005.
  • Kurihara, K., A. Iwata, S. G. Murray Horwitz, K. Ogane, T. Sugioka, A. Matsuki, and T. Okuda. 2022. Contribution of physical and chemical properties to dithiothreitol-measured oxidative potentials of atmospheric aerosol particles at urban and rural sites in Japan. Atmosphere. 13 (2):319. doi: 10.3390/atmos13020319.
  • Lanone, S., F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, and P. Hoet. 2009. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 6 (1):14. doi: 10.1186/1743-8977-6-14.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–71. doi: 10.1038/nature15371.
  • Moore, M. E., and A. R. McFarland. 1993. Performance modeling of single-inlet aerosol sampling cyclones. Environ. Sci. Technol. 27 (9):1842–8. doi: 10.1021/es00046a012.
  • Nassaj, O. R., D. Toghraie and, and M. Afrand. 2019. Effects of multi inlet guide channels on the performance of a cyclone separator. Powder Technol. 356:353–72. doi: 10.1016/j.powtec.2019.08.038.
  • Okuda, T., R. Isobe, Y. Nagai, S. Okahisa, K. Funato, and K. Inoue. 2015. Development of a high-volume pm2.5 particle sampler using impactor and cyclone techniques. Aerosol Air Qual. Res. 15 (3):759–67. doi: 10.4209/aaqr.2014.09.0194.
  • Okuda, T., and R. Isobe. 2017. Improvement of a high-volume aerosol particle sampler for collecting submicron particles through the combined use of a cyclone with a smoothened inner wall and a circular cone attachment. Asian J. Atmos. Environ. 11 (2):131–7. doi: 10.5572/ajae.2017.11.2.131.
  • Okuda, T., D. Shishido, Y. Terui, K. Fujioka, R. Isobe, Y. Iwaki, K. Funato, and K. Inoue. 2018. Development of a high-volume simultaneous sampler for fine and coarse particles using virtual impactor and cyclone techniques. Asian J. Atmos. Environ. 12 (1):78–86. doi: 10.5572/ajae.2018.12.1.078.
  • Okuda, T., M. Sakaide, K. Fujioka, R. Tabata, K. Kurosawa, Y. Nomura, A. Iwata, and M. Fujiwara. 2019. Investigation of the characteristics of particulate matter suspended in a subway station platform. J Japan Soc Atmosph Environ 54:28–33. doi: 10.11298/taiki.54.28.
  • Pope, C. A., III,., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56 (6):709–42. doi: 10.1080/10473289.2006.10464485.
  • Roper, C., L. S. Delgado, D. Barrett, S. L. Massey Simonich, and R. L. Tanguay. 2019. Pm2.5 filter extraction methods: Implications for chemical and toxicological analyses. Environ. Sci. Technol. 53 (1):434–42. doi: 10.1021/acs.est.8b04308.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken: Wiley.
  • Van Winkle, L. S., K. Bein, D. Anderson, K. E. Pinkerton, F. Tablin, D. Wilson, and A. S. Wexler. 2014. Biological dose response to pm2.5: Effect of particle extraction method on platelet and lung responses. Toxicol. Sci. 143 (2):349–59. doi: 10.1093/toxsci/kfu230.
  • Yoshida, H., Y. Hayase, K. Fukui, and T. Yamamoto. 2012. Effect of conical length on separation performance of sub-micron particles by electrical hydro-cyclone. Powder Technol. 219:29–36. doi: 10.1016/j.powtec.2011.12.002.
  • Zhang, P., G. Chen, J. Duan, and W. Wang. 2019. Experimental evaluation of separation performance of fine particles of circulatory circumfluent cyclone separator system. Sep. Purif. Technol. 210:231–5. doi: 10.1016/j.seppur.2018.08.008.
  • Zhang, Y., R. Jin, S. Dong, Y. Wang, K. Dong, Y. Wei, and B. Wang. 2021. Heterogeneous condensation combined with inner vortex broken cyclone to achieve high collection efficiency of fine particles and low energy consumption. Powder Technol. 382:420–30. doi: 10.1016/j.powtec.2021.01.003.