117
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Dust resuspension from fabrics exposed to airflow

ORCID Icon, , , , & ORCID Icon
Pages 667-680 | Received 24 Nov 2023, Accepted 23 Feb 2024, Published online: 18 Mar 2024

References

  • Argentina, M., and L. Mahadevan. 2005. Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. USA 102 (6):1829–34. doi: 10.1073/pnas.0408383102.
  • Barth, T., J. Preuß, G. Müller, and U. Hampel. 2014. Single particle resuspension experiments in turbulent channel flows. J. Aerosol Sci. 71:40–51. doi: 10.1016/j.jaerosci.2014.01.006.
  • Boor, B. E., M. P. Spilak, R. L. Corsi, and A. Novoselac. 2015. Characterizing particle resuspension from mattresses: Chamber study. Indoor Air. 25 (4):441–56. doi: 10.1111/ina.12148.
  • Calderón-Garcidueñas, L., and A. Ayala. 2022. Air pollution, ultrafine particles, and your brain: Are combustionnanoparticle emissions and engineered nanoparticles causingpreventable fatal neurodegenerative diseases and commonneuropsychiatric outcomes? Environ. Sci. Technol. 56 (11):6847–56. doi: 10.1021/acs.est.1c04706.
  • Farahani, V. J., A. Altuwayjiri, S. Taghvaee, and C. Sioutas. 2022. Tailpipe and nontailpipe emission factors and source contributionsof pm(10) on major freeways in the Los Angeles basin. Environ. Sci. Technol. 56 (11):7029–39. doi: 10.1021/acs.est.1c06954.
  • Feng, J., C. T. Wang, Y. Zhang, K. C. Chan, C. H. Liu, C. Y. H. Chao, and S. C. Fu. 2023. Particle resuspension from a flow-induced fluttering flexible substrate. Powder Technol. 415:118163. doi: 10.1016/j.powtec.2022.118163.
  • Fu, S. C., C. Y. H. Chao, R. M. C. So, and W. T. Leung. 2013. Particle resuspension in a wall-bounded turbulent flow. J. Fluids Eng.-Trans. ASME 135 (4):9. doi: 10.1115/1.4023660.
  • Fussell, J. C., M. Franklin, D. C. Green, M. Gustafsson, R. M. Harrison, W. Hicks, F. J. Kelly, F. Kishta, M. R. Miller, I. S. Mudway, et al. 2022. A review of road traffic-derived non-exhaust particles: Emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56 (11):6813–35. doi: 10.1021/acs.est.2c01072.
  • Goldasteh, I., G. Ahmadi, and A. R. Ferro. 2013. Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows. J. Aerosol Sci. 66:62–71. doi: 10.1016/j.jaerosci.2013.07.012.
  • Guingo, M., and J. P. Minier. 2008. A new model for the simulation of particle resuspension by turbulent flows based on a stochastic description of wall roughness and adhesion forces. J. Aerosol Sci. 39 (11):957–73. doi: 10.1016/j.jaerosci.2008.06.007.
  • Gustafsson, M., G. Blomqvist, I. Järlskog, J. Lundberg, S. Janhäll, M. Elmgren, C. Johansson, M. Norman, and S. Silvergren. 2019. Road dust load dynamics and influencing factors for six winter seasons in stockholm, sweden. Atmos. Environ.-X 2:100014. doi: 10.1016/j.aeaoa.2019.100014.
  • Henry, C., and J. P. Minier. 2014. Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Energy Combust. Sci. 45:1–53. doi: 10.1016/j.pecs.2014.06.001.
  • Henry, C., J. P. Minier, and S. Brambilla. 2023. Particle resuspension: Challenges and perspectives for future models. Phys. Rep.-Rev. Sec. Phys. Lett. 1007:1–98. doi: 10.1016/j.physrep.2022.12.005.
  • Ibrahim, A. H., P. F. Dunn, and R. M. Brach. 2003. Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. J. Aerosol Sci. 34 (6):765–82. doi: 10.1016/s0021-8502(03)00031-4.
  • Jeong, H., J. Y. Choi, J. Lim, and K. Ra. 2020. Pollution caused by potentially toxic elements present in road dust from industrial areas in korea. Atmosphere 11 (12):1366. doi: 10.3390/atmos11121366.
  • Jiang, Y. B., S. Matsusaka, H. Masuda, and Y. Qian. 2008. Characterizing the effect of substrate surface roughness on particle-wall interaction with the airflow method. Powder Technol. 186 (3):199–205. doi: 10.1016/j.powtec.2007.11.041.
  • Kim, Y., G. Wellum, K. Mello, K. E. Strawhecker, R. Thoms, A. Giaya, and B. E. Wyslouzil. 2016. Effects of relative humidity and particle and surface properties on particle resuspension rates. Aerosol Sci. Technol. 50 (4):339–52. doi: 10.1080/02786826.2016.1152350.
  • Knibbs, L. D., C. R. He, C. Duchaine, and L. Morawska. 2012. Vacuum cleaner emissions as a source of indoor exposure to airborne particles and bacteria. Environ. Sci. Technol. 46 (1):534–42. doi: 10.1021/es202946w.
  • Kvasnicka, J., E. A. C. Hubal, J. A. Siegel, J. A. Scott, and M. L. Diamond. 2022. Modeling clothing as a vector for transporting airborne particles and pathogens across indoor microenvironments. Environ. Sci. Technol. 56 (9):5641–52. doi: 10.1021/acs.est.1c08342.
  • Lai, A. C. K., Y. L. Tian, J. Y. L. Tsoi, and A. R. Ferro. 2017. Experimental study of the effect of shoes on particle resuspension from indoor flooring materials. Build. Environ. 118:251–8. doi: 10.1016/j.buildenv.2017.02.024.
  • Lee, H. H., Y. S. Cheung, S. C. Fu, and C. Y. H. Chao. 2019. Study of particle resuspension from dusty surfaces using a centrifugal method. Indoor Air. 29 (5):791–802. doi: 10.1111/ina.12576.
  • Leung, C. C. D., C. M. Ngai, C. K. Wong, and Y. H. Chan. 2023. A rare case of melioidosis presenting as pericarditis and pneumonia in a patient with poorly controlled diabetes mellitus. Respirol. Case Rep. 11 (4):e01119. doi: 10.1002/rcr2.1119.
  • Leung, W. T., S. C. Fu, and C. Y. H. Chao. 2017. Detachment of droplets by air jet impingement. Aerosol Sci. Technol. 51 (4):467–76. doi: 10.1080/02786826.2016.1265911.
  • Licina, D., and W. W. Nazaroff. 2018. Clothing as a transport vector for airborne particles: Chamber study. Indoor Air. 28 (3):404–14. doi: 10.1111/ina.12452.
  • Nasr, B., G. Ahmadi, A. R. Ferro, and S. Dhaniyala. 2020. A model for particle removal from surfaces with large-scale roughness in turbulent flows. Aerosol Sci. Technol. 54 (3):291–303. doi: 10.1080/02786826.2019.1692126.
  • Pace, R., G. Guidolotti, C. Baldacchini, E. Pallozzi, R. Grote, D. J. Nowak, and C. Calfapietra. 2021. Comparing i-tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean holm oak forest. Environ. Sci. Technol. 55 (10):6613–22. doi: 10.1021/acs.est.0c07679.
  • Qi, Y., Y. C. Chen, X. Yan, W. Liu, L. Ma, Y. C. Liu, Q. X. Ma, and S. J. Liu. 2022. Co-exposure of ambient particulate matter and airborne transmission pathogens: The impairment of the upper respiratory systems. Environ. Sci. Technol. 56 (22):15892–901. doi: 10.1021/acs.est.2c03856.
  • Reeks, M. W., and D. Hall. 2001. Kinetic models for particle resuspension in turbulent flows: Theory and measurement. J. Aerosol Sci. 32 (1):1–31. doi: 10.1016/s0021-8502(00)00063-x.
  • Reeks, M. W., J. Reed, and D. Hall. 1988. On the resuspension of small particles by a turbulent-flow. J. Phys. D: Appl. Phys. 21 (4):574–89. doi: 10.1088/0022-3727/21/4/006.
  • Rienda, I. C., and C. A. Alves. 2021. Road dust resuspension: A review. Atmos. Res. 261:105740. doi: 10.1016/j.atmosres.2021.105740.
  • Roberts, J. W., G. Glass, and L. Mickelson. 2004. A pilot study of the measurement and control of deep dust, surface dust, and lead in 10 old carpets using the 3-spot test while vacuuming. Arch. Environ. Contam. Toxicol. 48 (1):16–23. doi: 10.1007/s00244-003-0224-0.
  • Rondeau, A., S. Peillon, A. M. Vidales, J. Benito, R. Uñac, J.-C. Sabroux, and F. Gensdarmes. 2021. Evidence of inter-particles collision effect in airflow resuspension of poly-dispersed non-spherical tungsten particles in monolayer deposits. J. Aerosol Sci. 154:105735. doi: 10.1016/j.jaerosci.2020.105735.
  • Shiraiwa, M., K. Ueda, A. Pozzer, G. Lammel, C. J. Kampf, A. Fushimi, S. Enami, A. M. Arangio, J. Fröhlich-Nowoisky, Y. Fujitani, et al. 2017. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51 (23):13545–67. doi: 10.1021/acs.est.7b04417.
  • Song, J., R. R. Qu, B. B. Sun, R. J. Chen, H. D. Kan, Z. An, J. Jiang, J. Li, Y. G. Zhang, and W. D. Wu. 2022. Associations of short-term exposure to fine particulate matter with neural damage biomarkers: A panel study of healthy retired adults. Environ. Sci. Technol. 56 (11):7203–13. doi: 10.1021/acs.est.1c03754.
  • Sun, S. Z., W. N. Cao, V. C. Pun, H. Qiu, Y. Ge, and L. W. Tian. 2019. Respirable particulate constituents and risk of cause-specific mortality in the Hong Kong population. Environ. Sci. Technol. 53 (16):9810–7. doi: 10.1021/acs.est.9b01635.
  • Theron, F., D. Debba, and L. Le Coq. 2020. Local experimental methodology for the study of microparticles resuspension in ventilated duct during fan acceleration. J. Aerosol Sci. 140:105477. doi: 10.1016/j.jaerosci.2019.105477.
  • Theron, F., D. Debba, and L. Le Coq. 2022. Influence of the transient airflow pattern on the temporal evolution of microparticle resuspension: Application to ventilated duct during fan acceleration. Aerosol Sci. Technol. 56 (11):1033–46. doi: 10.1080/02786826.2022.2120793.
  • Wu, T., M. Fu, M. Valkonen, M. Täubel, Y. Xu, and B. E. Boor. 2021. Particle resuspension dynamics in the infant near-floor microenvironment. Environ. Sci. Technol. 55 (3):1864–75. doi: 10.1021/acs.est.0c06157.
  • Wu, Y. L., C. I. Davidson, and A. G. Russell. 1992. Controlled wind-tunnel experiments for particle bounceoff and resuspension. Aerosol Sci. Technol. 17 (4):245–62. doi: 10.1080/02786829208959574.
  • You, S. M., and M. P. Wan. 2014. A new turbulent-burst-based model for particle resuspension from rough surfaces in turbulent flow. Aerosol Sci. Technol. 48 (10):1031–42. doi: 10.1080/02786826.2014.955908.
  • Zhang, X. L., X. Chen, Y. Yue, S. X. Wang, B. Zhao, X. M. Huang, T. T. Li, Q. H. Sun, and J. Wang. 2023. Ecological study on global health effects due to source-specific ambient fine particulate matter exposure. Environ. Sci. Technol. 57 (3):1278–91. doi: 10.1021/acs.est.2c06752.
  • Zhang, X. Y., J. Y. Lyu, Y. J. Han, N. X. Sun, W. Sun, J. M. Li, C. J. Liu, and S. Yin. 2020. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on pm2.5 dry deposition velocities. Environ. Pollut. 265 (Pt B):114845. doi: 10.1016/j.envpol.2020.114845.
  • Zhou, N. Y., C. T. Jiang, Q. Chen, H. Yang, X. G. Wang, P. Zou, L. Sun, J. J. Liu, L. Li, L. B. Li, et al. 2018. Exposures to atmospheric pm10 and pm10–2.5 affect male semen quality: Results of marhcs study. Environ. Sci. Technol. 52 (3):1571–81. doi: 10.1021/acs.est.7b05206.
  • Ziskind, G., M. Fichman, and C. Gutfinger. 1997. Adhesion moment model for estimating particle detachment from a surface. J. Aerosol Sci. 28 (4):623–34. doi: 10.1016/s0021-8502(96)00460-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.