238
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Correlation gas chromatography and two-dimensional volatility basis methods to predict gas-particle partitioning for e-cigarette aerosols

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 630-643 | Received 14 Nov 2023, Accepted 27 Feb 2024, Published online: 19 Mar 2024

References

  • Ballbè, M., J. M. Martínez-Sánchez, X. Sureda, M. Fu, R. Pérez-Ortuño, J. A. Pascual, E. Saltó, and E. Fernández. 2014. Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers. Environ. Res. 135:76–80. doi: 10.1016/j.envres.2014.09.005.
  • Benziane, M., K. Khimeche, I. Mokbel, T. Sawaya, A. Dahmani, and J. Jose. 2011. Experimental vapor pressures of five saturated fatty acid ethyl ester (FAEE) components of biodiesel. J. Chem. Eng. Data 56 (12):4736–40. doi: 10.1021/je200730m.
  • Bhhatarai, B., W. Teetz, T. Liu, T. Öberg, N. Jeliazkova, N. Kochev, O. Pukalov, I. V. Tetko, S. Kovarich, E. Papa, et al. 2011. CADASTER QSPR models for predictions of melting and boiling points of perfluorinated chemicals. Mol. Inform. 30 (2–3):189–204. doi: 10.1002/minf.201000133.
  • Bianchi, F., T. Kurtén, M. Riva, C. Mohr, M. P. Rissanen, P. Roldin, T. Berndt, J. D. Crounse, P. O. Wennberg, T. F. Mentel, et al. 2019. Highly oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy radicals: A key contributor to atmospheric aerosol. Chem. Rev. 119 (6):3472–509. doi: 10.1021/acs.chemrev.8b00395.
  • Brommer, S., L. M. Jantunen, T. F. Bidleman, S. Harrad, and M. L. Diamond. 2014. Determination of vapor pressures for organophosphate esters. J. Chem. Eng. Data 59 (5):1441–7. doi: 10.1021/je401026a.
  • Canchola, A., C. M. S. Ahmed, K. Chen, J. Y. Chen, and Y. H. Lin. 2022a. Formation of redox-active duroquinone from vaping of vitamin E acetate contributes to oxidative lung Injury. Chem. Res. Toxicol. 35 (2):254–64. doi: 10.1021/acs.chemrestox.1c00309.
  • Canchola, A., R. Meletz, R. A. Khandakar, M. Woods, and Y. H. Lin. 2022b. Temperature dependence of emission product distribution from vaping of vitamin E acetate. PLoS One. 17 (3):e0265365. doi: 10.1371/journal.pone.0265365.
  • Chen, J. Y., H. Jiang, S. J. Chen, C. Cullen, C. M. Sabbir Ahmed, and Y. H. Lin. 2019. Characterization of electrophilicity and oxidative potential of atmospheric carbonyls. Environ. Sci. Process. Impacts. 21 (5):856–66. doi: 10.1039/c9em00033j.
  • Chen, K., N. Raeofy, M. Lum, R. Mayorga, M. Woods, R. Bahreini, H. Zhang, and Y. H. Lin. 2022. Solvent effects on chemical composition and optical properties of extracted secondary brown carbon constituents. Aerosol Sci. Technol. 56 (10):917–30. doi: 10.1080/02786826.2022.2100734.
  • Cornelius, M. E., C. G. Loretan, A. Jamal, B. C. Davis Lynn, M. Mayer, I. C. Alcantara, and L. Neff. 2023. Tobacco product use among adults—United States, 2021. MMWR. Morb. Mortal. Wkly. Rep. 72 (18):475–83. doi: 10.15585/mmwr.mm7218a1.
  • Creamer, M. R., T. W. Wang, S. Babb, K. A. Cullen, H. Day, G. Willis, A. Jamal, and L. Neff. 2019. Tobacco product use and cessation indicators among adults—United States, 2018. MMWR. Morb. Mortal. Wkly. Rep. 68 (45):1013–9. doi: 10.15585/mmwr.mm6845a2.
  • Dearden, J. C. 2003. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ. Toxicol. Chem. 22 (8):1696–709. doi: 10.1897/01-363.
  • Donahue, N. M., S. A. Epstein, S. N. Pandis, and A. L. Robinson. 2011. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 11 (7):3303–18. doi: 10.5194/acp-11-3303-2011.
  • Donahue, N. M., A. L. Robinson, and S. N. Pandis. 2009. Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmos. Environ. 43 (1):94–106. doi: 10.1016/j.atmosenv.2008.09.055.
  • Donahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40 (8):2635–43. doi: 10.1021/es052297c.
  • Felmlee, M. A., M. E. Morris, and D. E. Mager. 2012. Mechanism-based pharmacodynamic modeling. Methods Mol. Biol. 929:583–600. doi: 10.1007/978-1-62703-050-2_21.
  • Giroud, C., M. de Cesare, A. Berthet, V. Varlet, N. Concha-Lozano, and B. Favrat. 2015. E-cigarettes: A review of new trends in cannabis use. Int. J. Environ. Res. Public Health. 12 (8):9988–10008. doi: 10.3390/ijerph120809988.
  • Gobble, C., J. Chickos, and S. P. Verevkin. 2014. Vapor pressures and vaporization enthalpies of a series of dialkyl phthalates by correlation gas chromatography. J. Chem. Eng. Data 59 (4):1353–65. doi: 10.1021/je500110d.
  • Gobble, C., and J. S. Chickos. 2015. A comparison of results by correlation gas chromatography with another gas chromatographic retention time technique. The effects of retention time coincidence on vaporization enthalpy and vapor pressure. J. Chem. Eng. Data 60 (9):2739–48. doi: 10.1021/acs.jced.5b00444.
  • Gomis, M. I., Z. Wang, M. Scheringer, and I. T. Cousins. 2015. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Sci. Total Environ. 505:981–91. doi: 10.1016/j.scitotenv.2014.10.062.
  • Gordon, T., E. Karey, M. E. Rebuli, Y. H. Escobar, I. Jaspers, and L. C. Chen. 2022. E-cigarette toxicology.
  • Grain, C. F. W. F. (n.d.). Vapor pressure. In Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, ed. D.H. Lyman, W J, Reehl and Rosenblatt. New York: McGraw- Hill.
  • Hallquist, M., J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, et al. 2009. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 9 (14):5155–236. doi: 10.5194/acp-9-5155-2009.
  • Hawkins, J. E., and G. T. Armstrong. 1954. Physical and thermodynamic properties of terpenes. 1 III. the vapor pressures of α-pinene and β-pinene 2. J. Am. Chem. Soc. 76 (14):3756–8. doi: 10.1021/ja01643a051.
  • Hinckley, D. A., T. F. Bidleman, W. T. Foreman, J. R. Tuschall, and D. A. Hinckley. 1990. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data. J. Chem. Eng. Data 35 (3):232–7. doi: 10.1021/je00061a003.
  • Hua, M., E. E. Omaiye, W. Luo, K. J. McWhirter, J. F. Pankow, and P. Talbot. 2019. Identification of cytotoxic flavor chemicals in top-selling electronic cigarette refill fluids. Sci. Rep. 9 (1):2782. doi: 10.1038/s41598-019-38978-w.
  • Kanakidou, M., J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, et al. 2005. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 5 (4):1053–123. doi: 10.5194/acp-5-1053-2005.
  • Kleindienst, T. E., M. Jaoui, M. Lewandowski, J. H. Offenberg, and K. S. Docherty. 2012. The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides. Atmos. Chem. Phys. 12 (18):8711–26. doi: 10.5194/acp-12-8711-2012.
  • Kroll, J. H., C. Y. Lim, S. H. Kessler, and K. R. Wilson. 2015. Heterogeneous oxidation of atmospheric organic aerosol: kinetics of changes to the amount and oxidation state of particle-phase organic carbon. J. Phys. Chem. A 119 (44):10767–83. doi: 10.1021/acs.jpca.5b06946.
  • Lei, Y. D., R. Chankalal, A. Chan, and F. Wania. 2002. Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons. J. Chem. Eng. Data 47 (4):801–6. doi: 10.1021/je0155148.
  • Lei, Y. D., F. Wania, D. Mathers, and S. A. Mabury. 2004. Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols. J. Chem. Eng. Data 49 (4):1013–22. doi: 10.1021/je049949h.
  • Lumiaro, E., M. Todorović, T. Kurten, H. Vehkamäki, and P. Rinke. 2021. Predicting gas-particle partitioning coefficients of atmospheric molecules with machine learning. Atmos. Chem. Phys. 21 (17):13227–46. doi: 10.5194/acp-21-13227-2021.
  • Mackay, D., A. Bobra, D. W. Chan, and W. Y. Shiu. 1982. Vapor Pressure Correlations for Low-Volatility Environmental Chemicals. Environ. Sci. Technol. 16 (10):645–9. doi: 10.1021/es00104a004.
  • Mansouri, K., C. M. Grulke, A. M. Richard, R. S. Judson, and A. J. Williams. 2016. An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling. SAR QSAR Environ. Res. 27 (11):939–65. doi: 10.1080/1062936X.2016.1253611.
  • Meylan, W. M., and P. H. Howard. 2005. Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry’s law constants. Chemosphere 61 (5):640–4. doi: 10.1016/j.chemosphere.2005.03.029.
  • Ng, N. L., M. R. Canagaratna, Q. Zhang, J. L. Jimenez, J. Tian, I. M. Ulbrich, J. H. Kroll, K. S. Docherty, P. S. Chhabra, R. Bahreini, et al. 2010. Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry. Atmos. Chem. Phys. 10 (10):4625–41. doi: 10.5194/acp-10-4625-2010.
  • Okeme, J. O., T. F. M. Rodgers, J. M. Parnis, M. L. Diamond, T. F. Bidleman, and L. M. Jantunen. 2020. Gas chromatographic estimation of vapor pressures and octanol-air partition coefficients of semivolatile organic compounds of emerging concern. J. Chem. Eng. Data 65 (5):2467–75. doi: 10.1021/acs.jced.9b01126.
  • Omaiye, E. E., W. Luo, K. J. McWhirter, J. F. Pankow, and P. Talbot. 2022. Disposable puff bar electronic cigarettes: chemical composition and toxicity of E-liquids and a synthetic coolant. Chem. Res. Toxicol. 35 (8):1344–58. doi: 10.1021/acs.chemrestox.1c00423.
  • Omaiye, E. E., K. J. McWhirter, W. Luo, J. F. Pankow, and P. Talbot. 2019. High-nicotine electronic cigarette products: Toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem. Res. Toxicol. 32 (6):1058–69. doi: 10.1021/acs.chemrestox.8b00381.
  • Pankow, J. F. 2007. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 41:75–9. doi: 10.1016/j.atmosenv.2007.10.060.
  • Pankow, J. F. 1994. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28 (2):185–8. doi: 10.1016/1352-2310(94)90093-0.
  • Paur, H. R., F. R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W. G. Kreyling, O. Hänninen, G. Kasper, M. Riediker, et al. 2011. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J. Aerosol Sci. 42 (10):668–92. doi: 10.1016/j.jaerosci.2011.06.005.
  • Ranpara, A., A. B. Stefaniak, E. Fernandez, L. N. Bowers, E. D. Arnold, and R. F. LeBouf. 2023. Influence of puff topographies on e-liquid heating temperature, emission characteristics and modeled lung deposition of Puff BarTM. Aerosol Sci. Technol. 57 (5):450–66. doi: 10.1080/02786826.2023.2190786.
  • Russo, A. Y., M. E. Konnova, I. V. Andreeva, and S. P. Verevkin. 2019. Vaporization thermodynamics of compounds modeling lignin structural units. Fluid Phase Equilib. 491:45–55. doi: 10.1016/j.fluid.2019.03.004.
  • Sassano, M. F., E. S. Davis, J. E. Keating, B. T. Zorn, T. K. Kochar, M. C. Wolfgang, G. L. Glish, and R. Tarran. 2018. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol. 16 (3):e2003904. doi: 10.1371/journal.pbio.2003904.
  • Schauer, J. J., M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit. 1999. Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environ. Sci. Technol. 33 (10):1566–77. doi: 10.1021/es980076j.
  • Schmid, O., Möller, W., Semmler-Behnke, M. A., Ferron, G., Karg, E., Lipka, J., Schulz, H., Kreyling, W. G, and Stoeger, T. 2009. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 14:67–73. doi: 10.1080/13547500902965617.
  • Schripp, T., D. Markewitz, E. Uhde, and T. Salthammer. 2013. Does e-cigarette consumption cause passive vaping? Indoor Air. 23 (1):25–31. doi: 10.1111/j.1600-0668.2012.00792.x.
  • Shakya, K. M., and R. J. Griffin. 2010. Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 44 (21):8134–9. doi: 10.1021/es1019417.
  • Shen, L., and F. Wania. 2005. Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J. Chem. Eng. Data 50 (3):742–68. doi: 10.1021/je049693f.
  • Stoeger, T., C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg, B. Ritter, J. Heyder, and H. Schulz. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 114 (3):328–33. doi: 10.1289/ehp.8266.
  • Stull, D. R. 1947. Vapor pressure of pure substances. organic and inorganic compounds. Ind. Eng. Chem. 39 (4):517–50. doi: 10.1021/ie50448a022.
  • Su, W. C., Y. H. Lin, S. W. Wong, J. Y. Chen, J. Lee, and A. Buu. 2021. Estimation of the dose of electronic cigarette chemicals deposited in human airways through passive vaping. J. Expo. Sci. Environ. Epidemiol. 31 (6):1008–16. doi: 10.1038/s41370-021-00362-0.
  • Tayyarah, R. 2015. 2014 Electronic cigarette aerosol parameters study. Coresta. March 2015. Accessed September 28, 2021. https://www.coresta.org/sites/default/files/technical_documents/main/ECIG-CTR_ECigAerosolParameters-2014Study_March2015.pdf.
  • Thomson, G. W. M. 1945. Equation for vapor-pressure. data.
  • Tian, L., D. D. Huang, Q. Wang, S. Zhu, Q. Wang, C. Yan, W. Nie, Z. Wang, L. Qiao, Y. Liu, et al. 2023. Underestimated contribution of heavy aromatics to secondary organic aerosol revealed by comparative assessments using new and traditional methods. ACS Earth Space Chem. 7 (1):110–9. doi: 10.1021/acsearthspacechem.2c00252.
  • US EPA 2012. EPI suite − estimation program interface.
  • Vuong, Q. T., J. M. Son, P. Q. Thang, T. Ohura, and S. D. Choi. 2022. Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons. Environ. Pollut. 294:118644. doi: 10.1016/j.envpol.2021.118644.
  • Vuong, Q. T., P. Q. Thang, T. Ohura, and S. D. Choi. 2020. Determining sub-cooled liquid vapor pressures and octanol-air partition coefficients for chlorinated and brominated polycyclic aromatic hydrocarbons based on gas chromatographic retention times: Application for gas/particle partitioning in air. Atmos. Environ. 229:117461. doi: 10.1016/j.atmosenv.2020.117461.
  • Wang, M., D. Chen, M. Xiao, Q. Ye, D. Stolzenburg, V. Hofbauer, P. Ye, A. L. Vogel, R. L. Mauldin, A. Amorim, et al. 2020. Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds. Environ. Sci. Technol. 54 (13):7911–21. doi: 10.1021/acs.est.0c02100.
  • Wang, N., S. D. Jorga, J. R. Pierce, N. M. Donahue, and S. N. Pandis. 2018. Particle wall-loss correction methods in smog chamber experiments. Atmos. Meas. Tech. 11 (12):6577–88. doi: 10.5194/amt-11-6577-2018.
  • Williams, B. J., A. H. Goldstein, N. M. Kreisberg, and S. V. Hering. 2010. In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds. Proc. Natl. Acad. Sci. U S A 107 (15):6676–81. doi: 10.1073/pnas.0911858107.
  • Wilson, J., C. Gobble, and J. Chickos. 2015. Vaporization, sublimation, and fusion enthalpies of some saturated and unsaturated long chain fatty acids by correlation gas chromatography. J. Chem. Eng. Data 60 (1):202–12. doi: 10.1021/je5009729.
  • Xiao, H., and F. Wania. 2003. Is vapor pressure or the octanol-air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmos. Environ. 37 (20):2867–78. doi: 10.1016/S1352-2310(03)00213-9.
  • Yan, A., and J. Gasteiger. 2003. Prediction of aqueous solubility of organic compounds by topological descriptors. QSAR Comb. Sci. 22 (8):821–9. doi: 10.1002/qsar.200330822.
  • Yu, Y., S. Guo, H. Wang, R. Shen, W. Zhu, R. Tan, K. Song, Z. Zhang, S. Li, Y. Chen, et al. 2022. Importance of semivolatile/intermediate-volatility organic compounds to secondary organic aerosol formation from Chinese domestic cooking emissions. Environ. Sci. Technol. Lett. 9 (6):507–12. doi: 10.1021/acs.estlett.2c00207.
  • Zang, Q., K. Mansouri, A. J. Williams, R. S. Judson, D. G. Allen, W. M. Casey, and N. C. Kleinstreuer. 2017. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J. Chem. Inf. Model. 57 (1):36–49. doi: 10.1021/acs.jcim.6b00625.
  • Zhao, Y., C. J. Hennigan, A. A. May, D. S. Tkacik, J. A. De Gouw, J. B. Gilman, W. C. Kuster, A. Borbon, and A. L. Robinson. 2014. Intermediate-volatility organic compounds: A large source of secondary organic aerosol. Environ. Sci. Technol. 48 (23):13743–50. doi: 10.1021/es5035188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.