313
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Spatial and temporal characterization of droplet diameter and velocities of a nasal spray atomization

ORCID Icon, , , & ORCID Icon
Pages 610-629 | Received 25 Oct 2023, Accepted 26 Feb 2024, Published online: 02 Apr 2024

References

  • Belhadef, A., A. Vallet, M. Amielh, and F. Anselmet. 2012. Pressure-swirl atomization: Modeling and experimental approaches. Int. J. Multiphase Flow. 39:13–20. doi: 10.1016/j.ijmultiphaseflow.2011.09.009.
  • Dafsari, R. A., F. Vashahi, and J. Lee. 2017. Effect of swirl chamber length on the atomization characteristics of a pressure-swirl nozzle. Atomiz. Spr. 27 (10):859–74. doi: 10.1615/AtomizSpr.2017024777.
  • Dafsari, R. A., H. J. Lee, J. Han, and J. Lee. 2019a. Evaluation of the atomization characteristics of aviation fuels with different viscosities using a pressure swirl atomizer. Int. J. Heat Mass Transf. 145:118704. doi: 10.1016/j.ijheatmasstransfer.2019.118704.
  • Dafsari, R. A., H. J. Lee, J. Han, D.-C. Park, and J. Lee. 2019b. Viscosity effect on the pressure swirl atomization of an alternative aviation fuel. Fuel. 240:179–91. doi: 10.1016/j.fuel.2018.11.132.
  • Dayal, P., M. Sudhan Shaik, and M. Singh. 2004. Evaluation of different parameters that affect droplet‐size distribution from nasal sprays using the Malvern Spraytec. J. Pharm. Sci. 93 (7):1725–42. doi: 10.1002/jps.20090.
  • Dorfner, V., J. Domnick, F. Durst, and R. Kohler. 1995. Viscosity and surface tension effects in pressure swirl atomization. Atomiz. Spr. 5 (3):261–85. doi: 10.1615/AtomizSpr.v5.i3.20.
  • Doughty, D. V., C. Vibbert, A. Kewalramani, M. E. Bollinger, and R. N. Dalby. 2011. Automated actuation of nasal spray products: Determination and comparison of adult and pediatric settings. Drug Dev. Ind. Pharm. 37 (3):359–66. doi: 10.3109/03639045.2010.520321.
  • Durdina, L., J. Jedelsky, and M. Jicha. 2012. Spray structure of a pressure-swirl atomizer for combustion applications. In EPJ web of conferences, Vol. 25, 01010. Les Ulis, France: EDP Sciences. doi: 10.1051/epjconf/20122501010.
  • Durdina, L., J. Jedelsky, and M. Jicha. 2014. Investigation and comparison of spray characteristics of pressure-swirl atomizers for a small-sized aircraft turbine engine. Int. J. Heat Mass Transf. 78:892–900. doi: 10.1016/j.ijheatmasstransfer.2014.07.066.
  • Fung, M. C., K. Inthavong, W. Yang, P. Lappas, and J. Tu. 2013. External characteristics of unsteady spray atomization from a nasal spray device. J. Pharm. Sci. 102 (3):1024–35. doi: 10.1002/jps.23449.
  • Gao, M., X. Shen, and S. Mao. 2020. Factors influencing drug deposition in the nasal cavity upon delivery via nasal sprays. J. Pharm. Investig. 50 (3):251–9. doi: 10.1007/s40005-020-00482-z.
  • Guo, C., K. J. Stine, J. F. Kauffman, and W. H. Doub. 2008. Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design. Eur. J. Pharm. Sci. 35 (5):417–26. doi: 10.1016/j.ejps.2008.09.001.
  • Hansen, K. G., J. Madsen, C. M. Trinh, C. H. Ibsen, T. Solberg, and B. H. Hjertager. 2002. A computational and experimental study of the internal flow in a scaled pressure-swirl atomizer. Zaragoza. 9:11.
  • Hosseini, S., X. Wei, J. V. Wilkins, Jr, C. P. Fergusson, R. Mohammadi, G. Vorona, and L. Golshahi. 2019. In vitro measurement of regional nasal drug delivery with Flonase,® Flonase® Sensimist,™ and MAD Nasal™ in anatomically correct nasal airway replicas of pediatric and adult human subjects. J. Aerosol Med. Pulm. Drug Deliv. 32 (6):374–85. doi: 10.1089/jamp.2019.1523.
  • Inthavong, K., M. C. Fung, W. Yang, and J. Tu. 2015. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure. J. Aerosol Med. Pulm. Drug Deliv. 28 (1):59–67. doi: 10.1089/jamp.2013.1093.
  • Inthavong, K., M. C. Fung, X. Tong, W. Yang, and J. Tu. 2014. High resolution visualization and analysis of nasal spray drug delivery. Pharm. Res. 31 (8):1930–7. doi: 10.1007/s11095-013-1294-y.
  • Inthavong, K., W. Yang, M. C. Fung, and J. Y. Tu. 2012. External and near-nozzle spray characteristics of a continuous spray atomized from a nasal spray device. Aerosol Sci. Technol. 46 (2):165–77. doi: 10.1080/02786826.2011.617793.
  • Inthavong, K., Z. F. Tian, H. F. Li, J. Y. Tu, W. Yang, C. L. Xue, and C. G. Li. 2006. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci. Technol. 40 (11):1034–45. doi: 10.1080/02786820600924978.
  • Kimbell, J. S., R. A. Segal, B. Asgharian, B. A. Wong, J. D. Schroeter, J. P. Southall, C. J. Dickens, G. Brace, and F. J. Miller. 2007. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J. Aerosol Med. 20 (1):59–74. doi: 10.1089/jam.2006.0531.
  • Kowalczuk, P. B., and J. Drzymala. 2016. Physical meaning of the Sauter mean diameter of spherical particulate matter. Part. Sci. Technol. 34 (6):645–7. doi: 10.1080/02726351.2015.1099582.
  • Lefebvre, A. H., and V. G. McDonell. 2017. Atomization and sprays. Boca Raton, FL: CRC Press.
  • Liu, X., W. H. Doub, and C. Guo. 2010. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA). Int. J. Pharm. 388 (1–2):82–7. doi: 10.1016/j.ijpharm.2009.12.041.
  • Liu, X., W. H. Doub, and C. Guo. 2011. Assessment of the influence factors on nasal spray droplet velocity using Phase-Doppler Anemometry (PDA). AAPS PharmSciTech. 12 (1):337–43. doi: 10.1208/s12249-011-9594-1.
  • Sijs, R., S. Kooij, H. J. Holterman, J. Van De Zande, and D. Bonn. 2021. Drop size measurement techniques for sprays: Comparison of image analysis, phase Doppler particle analysis, and laser diffraction. AIP Adv. 11 (1):015315. doi: 10.1063/5.0018667.
  • Sumer, B., N. Erkan, O. Uzol, and I. H. Tuncer. 2012. Experimental and numerical investigation of a pressure swirl atomizer. Proceedings of the ICLASS, Heidelberg, Germany, 2–6.
  • Sun, Y., A. M. Alkhedhair, Z. Guan, and K. Hooman. 2018. Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers. Energy. 160:678–92. doi: 10.1016/j.energy.2018.07.060.
  • Tratnig, A., and G. Brenn. 2010. Drop size spectra in sprays from pressure-swirl atomizers. Int. J. Multiphase Flow. 36 (5):349–63. doi: 10.1016/j.ijmultiphaseflow.2010.01.008.
  • Van Strien, J., P. Petersen, P. Lappas, L. Yeo, A. Rezk, S. Vahaji, and K. Inthavong. 2022. Spray characteristics from nasal spray atomization. J. Aerosol Sci. 165:106009. doi: 10.1016/j.jaerosci.2022.106009.
  • Williams, T. J., J. C. Gilles, and S. Murphy. 2009. Velocity profiling of sprays from pharmaceutical nasal spray pumps. Respiratory Drug Delivery Europe. 441–4.
  • Zhao, J., and L. Yang. 2012. Simulation and experimental study on the atomization character of the pressure-swirl nozzle. OJFD. 02 (04):271–7. doi: 10.4236/ojfd.2012.24A032.