91
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Wireless CardioS framework for continuous ECG acquisition

, &
Pages 201-216 | Received 08 May 2023, Accepted 30 Sep 2023, Published online: 01 Nov 2023

References

  • Bouzid Z, Al-Zaiti SS, Bond R, et al. Remote and wearable ECG devices with diagnostic abilities in adults: a state-of-the-science scoping review. Heart Rhythm. 2022;19(7):1192–1201. doi: 10.1016/j.hrthm.2022.02.030.
  • Rowan C, Hirten R. The future of telemedicine and wearable technology in IBD. Curr Opin Gastroenterol. 2022;38(4):373–381. doi: 10.1097/MOG.0000000000000845.
  • Huarng KH, Yu TH, Fang Lee C. Adoption model of healthcare wearable devices. Technol Forecast Social Change. 2022;174:121286. doi: 10.1016/j.techfore.2021.121286.
  • Sivani T, Mishra S. Wearable devices: evolution and usage in remote patient monitoring system. InConnected e-Health. Berlin: Springer, Cham; 2022; pp. 311–332.
  • Larnyo E, Dai B, Larnyo A, et al. Impact of actual use behavior of healthcare wearable devices on quality of life: a Cross-Sectional survey of people with dementia and their caregivers in Ghana. InHealthcare. 2022;10(2):275. doi: 10.3390/healthcare10020275.
  • Available from: https://www.prnewswire.com/news-releases/smart-wearable-healthcare-devices-market-size.
  • Available from: https://timesofindia.indiatimes.com/blogs/voices/data-the-key-to-wearable-technology/.
  • Lee SP, Ha G, Wright DE, et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit Med. 2018;1(1):2. doi: 10.1038/s41746-017-0009-x.
  • Kwon S, Kwon Y-T, Kim Y-S, et al. Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes. Biosens Bioelectron. 2020;151:111981. doi: 10.1016/j.bios.2019.111981.
  • Seshadri DR, Magliato S, Voos JE, et al. Clinical translation of biomedical sensors for sports medicine. J Med Eng Technol. 2019;43(1):66–81. doi: 10.1080/03091902.2019.1612474.
  • Arquilla K, Webb AK, Anderson AP. Textile electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors. 2020;20(4):1013. doi: 10.3390/s20041013.
  • Maithani Y, Singh A, Mehta BR, et al. PEDOT: PSS treated cotton-based textile dry electrode for ECG sensing. Mater Today: Proc. 2022;62(6):4052–4057.
  • Qin H, Li J, He B, et al. Novel wearable electrodes based on conductive chitosan fabrics and their application in smart garments. Materials. 2018;11(3):370. doi: 10.3390/ma11030370.
  • Majumder S, Chen L, Marinov O, et al. Noncontact wearable wireless ECG systems for long-term monitoring. IEEE Rev Biomed Eng. 2018;11:306–321. doi: 10.1109/RBME.2018.2840336.
  • Liu S, Meng X, Zhang J, et al. A wireless fully-passive acquisition of biopotentials. Biosens Bioelectron. 2019;139:111336. doi: 10.1016/j.bios.2019.111336.
  • Fukuma N, Hasumi E, Fujiu K, et al. Feasibility of a T-shirt-type wearable electrocardiography monitor for detection of covert atrial fibrillation in young healthy adults. Sci Rep. 2019;9(1):11768. doi: 10.1038/s41598-019-48267-1.
  • Shao M, Zhou Z, Bin G, et al. A wearable electrocardiogram telemonitoring system for atrial fibrillation detection. Sensors (Basel). 2020;20(3):606. doi: 10.3390/s20030606.
  • Faruk N, Abdulkarim A, Emmanuel I, et al. A comprehensive survey on low-cost ECG acquisition systems: advances on design specifications, challenges and future direction. Biocybern Biomed Eng. 2021;41(2):474–502. doi: 10.1016/j.bbe.2021.02.007.
  • Zhao J, Deng J, Liang W, et al. Water-retentive, 3D knitted textile electrode for long-term and motion state bioelectrical signal acquisition. Compos Sci Technol. 2022;227:109606. doi: 10.1016/j.compscitech.2022.109606.
  • Le K, Narayana H, Servati A, et al. Electronic textiles for electrocardiogram monitoring: a review on the structure-property and performance evaluation from fiber to fabric. Text Res J. 2023;93(3-4):878–910. doi: 10.1177/00405175221108208.
  • Feng B, Wei H, Shi B, et al. Sleeping heart monitoring using hydrogel-textile capacitive ECG electrodes. IEEE Sensors J. 2022;22(10):9255–9267. doi: 10.1109/JSEN.2022.3164076.
  • Qian L, He D, Cao X, et al. Robust conductive polyester fabric with enhanced multi-layer silver deposition for textile electrodes. Colloids Surf A. 2022;644:128857. doi: 10.1016/j.colsurfa.2022.128857.
  • Pani D, Achilli A, Bonfiglio A. Survey on textile electrode technologies for electrocardiographic (ECG) monitoring, from metal wires to polymers. Adv Mater Technol. 2018;3(10):1800008. doi: 10.1002/admt.201800008.
  • Chen X, Ma Y. Wearable lithium ion batteries based on carbon nanotubes and graphene. Adv Mater Technol. 2018;3(10):1800041. doi: 10.1002/admt.201800041.
  • de Mulatier S, Nasreldin M, Delattre R, et al. Electronic circuits integration in textiles for data processing in wearable technologies. Adv Mater Technol. 2018;3(10):1700320. doi: 10.1002/admt.201700320.
  • Babusiak B, Borik S, Balogova L. Textile electrodes in capacitive signal sensing applications. Measurement. 2018;114:69–77. doi: 10.1016/j.measurement.2017.09.024.
  • Avdeeva DK, Ivanov ML, Yuzhakov MM, et al. Novel high-resolution nanosensor-based measuring equipment for ECG recording. Measurement. 2019;146:215–229. doi: 10.1016/j.measurement.2019.06.023.
  • Atakan R, Tufan HA, Uz Zaman S, et al. Protocol to assess the quality of transmission lines within smart textile structures. Measurement. 2020;152:107194. doi: 10.1016/j.measurement.2019.107194.
  • Salim A, Lim S. Recent advances in noninvasive flexible and wearable wireless biosensors. Biosens Bioelectron. 2019;141:111422. doi: 10.1016/j.bios.2019.111422.
  • Hatamie A, Angizi S, Kumar S, et al. Textile based chemical and physical sensors for healthcare monitoring. J Electrochem Soc. 2020;167(3):037546. doi: 10.1149/1945-7111/ab6827.
  • Shi J, Liu S, Zhang L, et al. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater. 2020;32(5):1901958. doi: 10.1002/adma.201901958.
  • Rajbhandary PL, Nallathambi G, Selvaraj N, et al. ECG signal quality assessments of a small bipolar single-lead wearable patch sensor. Cardiovasc Eng Technol. 2022;13(5):783–796. doi: 10.1007/s13239-022-00617-3.
  • Ferri J, Llinares R, Segarra I, et al. A new method for manufacturing dry electrodes on textiles. Validation for wearable ECG monitoring. Electrochem Commun. 2022;136:107244. doi: 10.1016/j.elecom.2022.107244.
  • Fan W, He Q, Meng K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv. 2020;6(11):eaay2840. doi: 10.1126/sciadv.aay2840.
  • Jiao Y, Qi H, Wu J. Capsule network assisted electrocardiogram classification model for smart healthcare. Biocybern Biomed Eng. 2022;42(2):543–555. doi: 10.1016/j.bbe.2022.03.006.
  • Allam JP, Samantray S, Ari S. SpEC: a system for patient specific ECG beat classification using deep residual network. Biocybern Biomed Eng. 2020;40(4):1446–1457. doi: 10.1016/j.bbe.2020.08.001.
  • Hernandez-Matamoros A, Fujita H, Escamilla-Hernandez E, et al. Recognition of ECG signals using wavelet based on atomic functions. Biocybern Biomed Eng. 2020;40(2):803–814. doi: 10.1016/j.bbe.2020.02.007.
  • Santos MA, Munoz R, Olivares R, et al. Online heart monitoring systems on the internet of health things environments: a survey, a reference model and an outlook. Information Fusion. 2020;53:222–239. doi: 10.1016/j.inffus.2019.06.004.
  • Fouassier D, Roy X, Blanchard A, et al. Assessment of signal quality measured with a smart 12-lead ECG acquisition T-shirt. Ann Noninvasive Electrocardiol. 2020;25(1):e12682. doi: 10.1111/anec.12682.
  • Pandian PS, Mohanavelu K, Safeer KP, et al. Smart vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys. 2008;30(4):466–477. doi: 10.1016/j.medengphy.2007.05.014.
  • Wang P, Lin Z, Yan X, et al. A wearable ECG monitor for deep learning based real-time cardiovascular disease detection. arXiv Preprint. arXiv:220110083; 2022; 1–9.
  • Yoon S, Yoon H, Zahed MA, et al. Multifunctional hybrid skin patch for wearable smart healthcare applications. Biosens Bioelectron. 2022;196:113685. doi: 10.1016/j.bios.2021.113685.
  • Shih M, Kuo CT, Lin MH, et al. A 3D-CNT micro-electrode array for zebrafish ECG study including directionality measurement and drug test. Biocybern Biomed Eng. 2020;40(2):701–708. doi: 10.1016/j.bbe.2020.02.008.
  • Pandey A, Singh B, Saini BS, et al. A novel fused coupled chaotic map based confidential data embedding-then-encryption of electrocardiogram signal. Biocybern Biomed Eng. 2019;39(2):282–300. doi: 10.1016/j.bbe.2018.11.012.
  • Zahed MA, Das PS, Maharjan P, et al. Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system. Carbon. 2020;165:26–36. doi: 10.1016/j.carbon.2020.04.031.
  • Castrillón R, Pérez JJ, Andrade-Caicedo H. Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG monitoring: a comparative study. Biomed Eng Online. 2018;17(1):38. doi: 10.1186/s12938-018-0469-5.
  • Di Rienzo M, Racca V, Rizzo F, et al. Evaluation of a textile-based wearable system for the electrocardiogram monitoring in cardiac patients. Europace. 2013;15(4):607–612. doi: 10.1093/europace/eus368.
  • Amir SAB. Optimizing novel ECG electrodes [doctoral dissertation]. Worcester (MA): Worcester Polytechnic Institute; 2013; pp. 13–15.
  • Yao S, Zhu Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM. 2016;68(4):1145–1155. doi: 10.1007/s11837-016-1818-0.
  • Colyer SL, McGuigan PM. Textile electrodes embedded in clothing: a practical alternative to traditional surface electromyography when assessing muscle excitation during functional movements. J Sports Sci Med. 2018;17(1):101.
  • Reddy R, Sriraam N, Vittal PR, et al. Performance evaluation of woven conductive dry textile electrodes for continuous ECG signals acquisition. IEEE Sens J. 2019;20:1573–1581.
  • Avvaru S, Sriraam N, Prakash VS, et al. Wearable Ag-NyW textile electrode for continuous ECG monitoring. Res Biomed Eng. 2021;37(2):231–247. doi: 10.1007/s42600-021-00147-2.
  • WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet. 2004;363(9403):157–163.
  • Gan Y, Rahajandraibe W, Vauche R, et al. A new method to reduce motion artifact in electrocardiogram based on an innovative skin-electrode impedance model. Biomed Signal Process Control. 2022;76:103640. doi: 10.1016/j.bspc.2022.103640.
  • Kajornklin P, Jarujamrus P, Phanphon P, et al. Fabricating a low-cost, simple, screen printed paper towel-based experimental device to demonstrate the factors affecting chemical equilibrium and chemical equilibrium constant, Kc. J Chem Educ. 2020;97(7):1984–1991. doi: 10.1021/acs.jchemed.9b00918.
  • Dodson-Robinson SE, Delgado VR, Harrell J, et al. Magnitude-squared coherence: a powerful tool for disentangling doppler planet discoveries from stellar activity. Astronom J. 2022;163(4):169. doi: 10.3847/1538-3881/ac52ed.
  • Cirrincione G, Randazzo V, Pasero E. A Neural based comparative analysis for feature extraction from ECG signals. In: Esposito A, Faundez-Zanuy M, Morabito F, Pasero E, editors. Neural approaches to dynamics of signal exchanges. Singapore: Springer; 2020. p. 247–256.
  • Slama AB, Lentka Ł, Mouelhi A. Application of statistical features and multilayer neural network to automatic diagnosis of arrhythmia by ECG signals. Metrol Meas Syst. 2018;25(1):87–101.
  • Clifford GD, Azuaje F, McSharry P. Advanced methods and tools for ECG data analysis. Norwood: Artech House; 2006; pp. 55–57.
  • Sharma A, Singh D. Power spectral density analysis of HRV to evaluate changes in ANS during graded head-up tilt and head-reverse tilt. Optim Ind Syst. 2022:61–72.
  • Brusseau V, Tauveron I, Bagheri R, et al. Heart rate variability in hypothyroid patients: a systematic review and meta-analysis. PLoS One. 2022;17(6):e0269277. doi: 10.1371/journal.pone.0269277.
  • Yılmaz M, Kayançiçek H, Çekici Y. Heart rate variability: highlights from hidden signals. J Integr Cardiol. 2018;4:1–8.
  • Sriraam N, et al. A smart textile electrode belt for ECG recordings—a pilot study with Indian population. International Conference on Signal Processing and Communication (ICSPC-2019), Coimbatore, India, 2019 March 29–30; pp. 267–270.
  • Soroudi A, Skrifvars M, Nierstrasz V. Novel Skin-Electrode conductive adhesives to improve the quality of recorded body signals in smart medical garments. Multidiscip Digit Publ Inst Proc. 2019;32(1):9.
  • Cao J, Yang X, Rao J, et al. Stretchable and Self-Adhesive PEDOT: PSS blend with high sweat tolerance as conformal biopotential dry electrodes. ACS Appl Mater Interfaces. 2022;14(34):39159–39171. doi: 10.1021/acsami.2c11921.
  • Acar G, Ozturk O, Golparvar AJ, et al. Wearable and flexible textile electrodes for biopotential signal monitoring: a review. Electronics. 2019;8(5):479. doi: 10.3390/electronics8050479.
  • Badr A, Badawi A, Rashwan A, et al. 12-lead ECG platform for real-time monitoring and early anomaly detection. In2022. International Wireless Communications and Mobile Computing (IWCMC) 2022 May 30; IEEE; pp. 973–978. doi: 10.1109/IWCMC55113.2022.9824190.
  • Cristobal-Huerta A, Torrado-Carvajal A, Rodriguez-Sanchez C, et al. Implementation of ISO/IEEE 11073 PHD SpO2 and ECG device specializations over bluetooth HDP following health care profile for smart living. Sensors. 2022;22(15):5648. doi: 10.3390/s22155648.
  • Kumar D, Maharjan R, Maxhuni A, et al. mCardia: a context-aware ECG collection system for ambulatory arrhythmia screening. ACM Trans Comput Healthc. 2022;3(2):1–28. doi: 10.1145/3494581.
  • Baraeinejad B, Shayan MF, Vazifeh AR, et al. Design and implementation of an ultralow-power ECG patch and smart cloud-based platform. IEEE Trans Instrum Meas. 2022;71:1–11. doi: 10.1109/TIM.2022.3164151.
  • Morello R, Ruffa F, Jablonski I, et al. An IoT based ECG system to diagnose cardiac pathologies for healthcare applications in smart cities. Measurement. 2022;190:110685. doi: 10.1016/j.measurement.2021.110685.
  • Mieloszyk R, Twede H, Lester J, et al. A comparison of wearable tonometry, photoplethysmography, and electrocardiography for cuffless measurement of blood pressure in an ambulatory setting. IEEE J Biomed Health Inform. 2022;26(7):2864–2875. doi: 10.1109/JBHI.2022.3153259.
  • Kim H, Huh KY, Piao M, et al. Self-reporting technique-based clinical-trial service platform for real-time arrhythmia detection. Appl Sci. 2022;12(9):4558. doi: 10.3390/app12094558.
  • Poonam G, Chhaparwal R. Influence of low BMI on resting heart rate in different phases of menstrual cycle. Indian J Basic Appl Med Res. 2018;7(2):141–148.
  • Zhou W, Song R, Pan X, et al. Fabrication and impedance measurement of novel metal dry bioelectrode. Sens Actuators A Phys. 2013;201:127–133. doi: 10.1016/j.sna.2013.06.025.
  • Tsukada YT, Tokita M, Murata H, et al. Validation of wearable textile electrodes for ECG monitoring. Heart Vessels. 2019;34(7):1203–1211. doi: 10.1007/s00380-019-01347-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.