112
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Computer vision-based solutions to overcome the limitations of wireless capsule endoscopy

ORCID Icon, &
Pages 242-261 | Received 09 Sep 2022, Accepted 28 Dec 2023, Published online: 17 Jan 2024

References

  • Pan G, Wang L. Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol Res Pract. 2012;2012:841691–841699. doi: 10.1155/2012/841691.
  • Lukes P, Zabrodsky M, Plzak J, et al. Narrow band imaging (NBI)—endoscopic method for detection of head and neck cancer. In: Amornyotin S, editor. Endoscopy. Rijeka (Croatia): InTech; 2013. p. 75–87. doi: 10.5772/52738.
  • Kiesslich R, Neurath MF. Endomicroscopy is born—Do we still need the pathologist? Gastrointest Endosc. 2007; 66(1):150–153. doi: 10.1016/j.gie.2006.12.031.
  • Xie X, Li G, Chen X, et al. A low-power digital IC design inside the wireless endoscopic capsule. IEEE J Solid-State Circuits. 2006;41(11):2390–2400. doi: 10.1109/JSSC.2006.882884.
  • Liu H, Lu WS, Meng MQH. De-blurring wireless capsule endoscopy images by total variation minimization. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing; IEEE; 2011. doi: 10.1109/pacrim.2011.6032875.
  • Keuchel M, Kurniawan N, Baltes P, et al. Quantitative measurements in capsule endoscopy. Comput Biol Med. 2015;65:333–347. doi: 10.1016/j.compbiomed.2015.07.016.
  • Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol. 2015; 12(3):172–186. doi: 10.1038/nrgastro.2015.13.
  • Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest Endosc. 2014; 80(5):877–883. doi: 10.1016/j.gie.2014.06.026.
  • Giger ML. Machine learning in medical imaging. J Am Coll Radiol. 2018; 15(3 Pt B):512–520. doi: 10.1016/j.jacr.2017.12.028.
  • Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging. Radiographics. 2017;37(2):505–515. doi: 10.1148/rg.2017160130.
  • Choy G, Khalilzadeh O, Michalski M, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–328. doi: 10.1148/radiol.2018171820.
  • Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy. Nature. 2000;405(6785):417–417. doi: 10.1038/35013140.
  • Ciuti G, Menciassi A, Dario P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng. 2011;4:59–72. doi: 10.1109/rbme.2011.2171182.
  • Goenka MK, Majumder S, Goenka U. Capsule endoscopy: present status and future expectation. World J Gastroenterol. 2014;20(29):10024–10037. doi: 10.3748/wjg.v20.i29.10024.
  • Metzger YC, Adler SN, Shitrit ABG. Comparison of a new PillCamTM SB2 video capsule versus the standard PillCamTM SB for detection of small bowel disease. RMI. 2009; 2:7–11. doi: 10.2147/RMI.S4227.
  • Koulaouzidis A, Rondonotti E, Karargyris A. Small-bowel capsule endoscopy: a ten-point contemporary review. World J Gastroenterol. 2013;19(24):3726–3746. doi: 10.3748/wjg.v19.i24.3726.
  • Basar MR, Malek F, Juni KM, et al. Ingestible wireless capsule technology: a review of development and future indication. Int J Antennas Propag. 2012;2012:1–14. doi: 10.1155/2012/807165.
  • Lange J, Shah A, Meltzer AC. Video capsule endoscopy beyond the gastrointestinal suite. Gastrointest Endosc Clin N Am. 2021; 31(2):377–385. doi: 10.1016/j.giec.2020.12.005.
  • Medtronic. pillcam-sb-3-system. Available from https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-sb-3-system.html
  • Yi Li C, Ling Zhang B, Xiao Chen C, et al. OMOM capsule endoscopy in diagnosis of small bowel disease. J Zhejiang Univ Sci B. 2008;9(11):857–862. doi: 10.1631/jzus.b0820034.
  • Bang S, Park JY, Jeong S, et al. First clinical trial of the “MiRo” capsule endoscope by using a novel transmission technology: electric-field propagation. Gastrointest Endosc. 2009;69(2):253–259. doi: 10.1016/j.gie.2008.04.033.
  • Mussetto A, Fuccio L, Dari S, et al. MiroCam TM capsule for obscure gastrointestinal bleeding: a prospective, single centre experience. Dig Liver Dis. 2013;45(2):124–128. doi: 10.1016/j.dld.2012.08.016.
  • Gu Y, Xie X, Li G, et al. Design of endoscopic capsule with multiple cameras. IEEE Trans Biomed Circuits Syst. 2015;9(4):590–602. doi: 10.1109/tbcas.2014.2359012.
  • Duda K, Duplaga M, Zieliski T. Image enhancement tasks in capsule endoscopy. BioAlgorith Med-Syst. 2010;6(12):5–13.
  • Litwiller DJ. CMOS vs CCD: maturing technologies, maturing markets. Photonics Spectra. 2005;38(9):54–61.
  • Seitz U, Ang TL, Bohnacker S, et al. Comparison of image quality of two different capsule endoscopy systems. Gastrointest Endosc. 2006;63(5):AB225. doi: 10.1016/j.gie.2006.03.568.
  • Cave DR, Fleischer DE, Leighton JA, et al. A multicenter randomized comparison of the endocapsule and the pillcam SB. Gastrointest Endosc. 2008;68(3):487–494. doi: 10.1016/j.gie.2007.12.037.
  • Xavier S, Monteiro S, Magalhães J, et al. Capsule endoscopy with PillCamSB2 versus PillCamSB3: has the improvement in technology resulted in a step forward? Rev Esp Enferm Dig. 2017;110(3):155–159. doi: 10.17235/reed.2017.5071/2017.
  • Monteiro S, de Castro FD, Carvalho PB, et al. PillCamR SB3 capsule: does the increased frame rate eliminate the risk of missing lesions? World J Gastroenterol. 2016;22(10):3066–3068. doi: 10.3748/wjg.v22.i10.3066.
  • Yang YJ. The future of capsule endoscopy: the role of artificial intelligence and other technical advancements. Clin Endosc. 2020; 53(4):387–394. doi: 10.5946/ce.2020.133.
  • Pennazio M, Rondonotti E, Despott EJ, et al. Small bowel capsule endoscopy and artificial intelligence: first or second reader? Best Pract Res Clin Gastroenterol. 2021;55(1):58–95. doi: 10.1016/j.bpg.2021.101742.
  • Rahim T, Usman MA, Shin SY. A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging. Comput Med Imaging Graph. 2020; 85:101767. doi: 10.1016/j.compmedimag.2020.101767.
  • Yu L, Yuen PC, Lai J. Ulcer detection in wireless capsule endoscopy images. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012); 2012. p. 45–48.
  • Romain O, Histace A, Silva J, et al. Towards a multimodal wireless video capsule for detection of colonic polyps as prevention of colorectal cancer. In 13th IEEE International Conference on BioInformatics and BioEngineering; Nov. IEEE; 2013. Available from: doi: 10.1109/bibe.2013.6701670.
  • Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng. 2011; 58(10):2777–2786. doi: 10.1109/tbme.2011.2155064.
  • Qian Z, Themistocles D, Mg E, et al. A decision fusion strategy for polyp detection in capsule endoscopy. Stud Health Technol Inform. 2012;173(Medicine Meets Virtual Reality 19):559565. doi: 10.3233/978-1-61499-022-2-559.
  • Figueiredo PN, Figueiredo IN, Prasath S, et al. Automatic polyp detection in pillcam Colon 2 capsule images and videos: preliminary feasibility report. Diagn Ther Endosc. 2011;2011:182435–182437. doi: 10.1155/2011/182435.
  • Mamonov AV, Figueiredo IN, Figueiredo PN, et al. Automated polyp detection in Colon capsule endoscopy. IEEE Trans Med Imaging. 2014;33(7):1488–1502. doi: 10.1109/tmi.2014.2314959.
  • Li B, Meng MH, Xu L. A comparative study of shape features for polyp detection in wireless capsule endoscopy images. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2009. Available from: doi: 10.1109/IEMBS.2009.5334875.
  • Seguí S, Drozdzal M, Vilariño F, et al. Categorization and segmentation of intestinal content frames for wireless capsule endoscopy. IEEE Trans Inf Technol Biomed. 2012;16(6):1341–1352. doi: 10.1109/titb.2012.2221472.
  • Seguí S, Drozdzal M, Zaytseva E, et al. Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images. IEEE J Biomed Health Inform. 2014;18(6):1831–1838. doi: 10.1109/jbhi.2014.2304179.
  • Ciaccio EJ, Tennyson CA, Lewis SK, et al. Distinguishing patients with celiac disease by quantitative analysis of videocapsule endoscopy images. Comput Methods Programs Biomed. 2010;100(1):39–48. doi: 10.1016/j.cmpb.2010.02.005.
  • Ciaccio EJ, Tennyson CA, Bhagat G, et al. Classification of videocapsule endoscopy image patterns: comparative analysis between patients with celiac disease and normal individuals. BioMed Eng OnLine. 2010;9(1):44. doi: 10.1186/1475-925X-9-44.
  • Ciaccio EJ, Tennyson CA, Bhagat G, et al. Transformation of videocapsule images to detect small bowel mucosal differences in celiac versus control patients. Comput Meth Programs Biomed. 2012;108(1):28–37. doi: 10.1016/j.cmpb.2011.12.008.
  • Yagi Y, Vu H, Echigo T, et al. A diagnosis support system for capsule endoscopy. Inflammopharmacology. 2007;15(2):78–83. doi: 10.1007/s10787-006-0010-5.
  • Bashar MK, Mori K, Suenaga Y, et al. Detecting informative frames from wireless capsule endoscopic video using color and texture features. In Medical image computing and computer-assisted intervention – MICCAI 2008. Springer Berlin Heidelberg; 2008. p. 603–610.
  • Bashar M, Kitasaka T, Suenaga Y, et al. Automatic detection of informative frames from wireless capsule endoscopy images. Med Image Anal. 2010;14(3):449–470. doi: 10.1016/j.media.2009.12.001.
  • Gan T, Wu JC, Rao NN, et al. A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy. World J Gastroenterol. 2008;14(45):6929–6935. doi: 10.3748/wjg.14.6929.
  • Vu H, Echigo T, Sagawa R, et al. Detection of contractions in adaptive transit time of the small bowel from wireless capsule endoscopy videos. Comput Biol Med. 2009;39(1):16–26. doi: 10.1016/j.compbiomed.2008.10.005.
  • Vu H, Echigo T, Sagawa R, et al. Contraction detection in small bowel from an image sequence of wireless capsule endoscopy. In Medical image computing and computer-assisted intervention – MICCAI 2007. Springer Berlin Heidelberg; 2007. p. 775–783.
  • Kumar R, Zhao Q, Seshamani S, et al. Assessment of Crohn’s disease lesions in wireless capsule endoscopy images. IEEE Trans Biomed Eng. 2012;59(2):355–362. doi: 10.1109/tbme.2011.2172438.
  • Girelli CM, Porta P, Colombo E, et al. Development of a novel index to discriminate bulge from mass on small-bowel capsule endoscopy. Gastrointest Endosc. 2011;74(5):1067–1074. doi: 10.1016/j.gie.2011.07.022.
  • Tuba E, Tuba M, Jovanovic R. An algorithm for automated segmentation for bleeding detection in endoscopic images. In 2017 International Joint Conference on Neural Networks (IJCNN); May. IEEE; 2017. doi: 10.1109/IJCNN.2017.7966437.
  • Ding Z, Shi H, Zhang H, et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology. 2019;157(4):1044–1054.e5. doi: 10.1053/j.gastro.2019.06.025.
  • Xie X, Xiao YF, Zhao XY, et al. Development and validation of an artificial intelligence model for small bowel capsule endoscopy video review. JAMA Netw Open. 2022;5(7):e2221992. doi: 10.1001/jamanetworkopen.2022.21992.
  • Sekuboyina AK, Devarakonda ST, Seelamantula CS. A convolutional neural network approach for abnormality detection in wireless capsule endoscopy. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); Apr. IEEE; 2017. doi: 10.1109/ISBI.2017.7950698.
  • Vasilakakis MD, Diamantis D, Spyrou E, et al. Weakly supervised multilabel classification for semantic interpretation of endoscopy video frames. Evolving Syst. 2018;11(3):409–421. doi: 10.1007/s12530-018-9236-x.
  • Watson J, Firman M, Brostow G, et al. Self-supervised monocular depth hints. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV); IEEE; 2019. doi: 10.1109/ICCV.2019.00225.
  • Ye M, Johns E, et al. Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery. In 10th Hamlyn Symposium on Medical Robotics 2017. The Hamlyn Centre, Faculty of Engineering, Imperial College London; 2017. doi: 10.31256/hsmr2017.14.
  • Taleb A, Loetzsch W, Danz N, et al. 3d self-supervised methods for medical imaging In: Larochelle H, Ranzato M, Hadsell R editors. Advances in neural information processing systems; Vol. 33. Curran Associates, Inc.; 2020. p. 18158–18172. Available from: https://proceedings.neurips.cc/paper/2020/file/d2dc6368837861b42020ee72b0896182-Paper.pdf.
  • Garg R, Vk BG, Carneiro G, et al. Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Computer vision – ECCV 2016. Amsterdam (The Netherlands): Springer International Publishing; 2016. p. 740–756.
  • Zhou T, Brown M, Snavely N, et al. Unsupervised learning of depth and ego-motion from video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); July; 2017.
  • Yin Z, Shi J. GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE; 2018. Available from: doi: 10.1109/cvpr.2018.00212.
  • Mahjourian R, Wicke M, Angelova A. Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE; 2018. Available from: doi: 10.1109/cvpr.2018.00594.
  • Liu X, Sinha A, Ishii M, et al. Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans Med Imaging. 2020;39(5):1438–1447. doi: 10.1109/tmi.2019.2950936.
  • Chollet F. Deep learning with python. Shelter Island, NY: Manning Publications Co; 2018.
  • Tziortziotis I, Laskaratos FM, Coda S. Role of artificial intelligence in video capsule endoscopy. Diagnostics. 2021;11(7):1192. doi: 10.3390/diagnostics11071192.
  • Hwang Y, Park J, Lim YJ, et al. Application of artificial intelligence in capsule endoscopy: where are we now? Clin Endosc. 2018;51(6):547–551. doi: 10.5946/ce.2018.173.
  • Neumann H, Nägel A, Buda A. Advanced endoscopic imaging to improve adenoma detection. World J Gastrointest Endosc. 2015;7(3):224–229. doi: 10.4253/wjge.v7.i3.224.
  • Bjoersum-Meyer T, Spada C, Watson A, et al. What holds back Colon capsule endoscopy from being the main diagnostic test for the large bowel in cancer screening? Gastrointest Endosc. 2022;95(1):168–170. doi: 10.1016/j.gie.2021.09.007.
  • Mahmood F, Chen R, Durr NJ. Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans Med Imaging. 2018;37(12):2572–2581. doi: 10.1109/TMI.2018.2842767.
  • Mahmood F, Durr NJ. Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal. 2018; 48:230–243. doi: 10.1016/j.media.2018.06.005.
  • Sabottke CF, Spieler BM. The effect of image resolution on deep learning in radiography. Radiol Artif Intell. 2020; 2(1):e190015. doi: 10.1148/ryai.2019190015.
  • Yeganeh H, Rostami M, Wang Z. Objective quality assessment for image superresolution: a natural scene statistics approach. In 2012 19th IEEE International Conference on Image Processing; Septebmer IEEE; 2012. Available from: doi: 10.1109/icip.2012.6467151.
  • Ma C, Yang CY, Yang X, et al. Learning a no-reference quality metric for single-image super-resolution. Comput Vision Image Understanding. 2017;158:1–16. doi: 10.1016/j.cviu.2016.12.009.
  • Li Y, Sixou B, Peyrin F. A review of the deep learning methods for medical images super resolution problems. IRBM. 2021; 42(2):120–133. doi: 10.1016/j.irbm.2020.08.004.
  • Wang Y, Cai C, Zou YX. Single image super-resolution via adaptive dictionary pair learning for wireless capsule endoscopy image. In 2015 IEEE International Conference on Digital Signal Processing (DSP); July IEEE; 2015. doi: 10.1109/ICDSP.2015.7251943.
  • Almalioglu Y, Ozyoruk KB, Gokce A, et al. EndoL2h: deep super-resolution for capsule endoscopy. IEEE Trans Med Imaging. 2020;39(12):4297–4309. doi: 10.1109/tmi.2020.3016744.
  • İncetan K, Celik IO, Obeid A, et al. VR-caps: a virtual environment for capsule endoscopy. Med Image Anal. 2021;70:101990. doi: 10.1016/j.media.2021.101990.
  • Taş M, Yılmaz B. Super resolution convolutional neural network based pre-processing for automatic polyp detection in colonoscopy images. Comput Electric Eng. 2021;90:106959. doi: 10.1016/j.compeleceng.2020.106959.
  • Roh YJ, Lee DY, Kim MY. Visual inspection system with flexible illumination and autofocusing. In: Yoshizawa T, editor. Optomechatronic Systems III; October SPIE; 2002. Available from: doi: 10.1117/12.467381.
  • Zheng Y, Yu J, Kang SB, et al. Single-image vignetting correction using radial gradient symmetry. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition; June. IEEE; 2008. Available from: doi: 10.1109/cvpr.2008.4587413.
  • Mackiewicz M. Capsule endoscopy - state of the technology and computer vision tools after the first decade. In: Oliviu P, Andrada S, editors. New Techniques in Gastrointestinal Endoscopy. New York: InTech; 2011. doi: 10.5772/23145.
  • Olympus. ENDOCAPSULE 10 System. Available from https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Product/ENDOCAPSULE-10-System.html.
  • Long M, Lan Z, Xie X, et al. Image enhancement method based on adaptive fraction gamma transformation and color restoration for wireless capsule endoscopy. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS); October. IEEE; 2018. Available from: doi: 10.1109/BIOCAS.2018.8584793.
  • Long M, Li Z, Xie X, et al. Adaptive image enhancement based on guide image and fraction-power transformation for wireless capsule endoscopy. IEEE Trans Biomed Circuits Syst. 2018;12(5):993–1003. doi: 10.1109/tbcas.2018.2869530.
  • Medical Search. Mirocam Capsule Endoscopes—MC1200. Available from https://www.medicalsearch.com.au/mirocam-capsule-endoscopes-mc1200/p/186541
  • Sousa RM, Wäny M, Santos P, et al. Advanced illumination control algorithm for medical endoscopy applications. In: Dhar NK, Dutta AK, editors. Image sensing technologies: materials, devices, systems, and applications II; May SPIE; 2015. Available from: doi: 10.1117/12.2176928.
  • Shrestha R, Zhang X, Gias Z, et al. Adaptive illumination in wireless capsule endoscopy system. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS); May. IEEE; 2015. Available from: doi: 10.1109/ISCAS.2015.7168749.
  • Shrestha R, Mohammed SK, Hasan MM, et al. Automated adaptive brightness in wireless capsule endoscopy using image segmentation and sigmoid function. IEEE Trans Biomed Circuits Syst. 2016;10(4):884–892. doi: 10.1109/tbcas.2016.2546838.
  • Toet A, Wu T. IR contrast enhancement through log-power histogram modification. JPRR. 2015;10(1):1–23. doi: 10.13176/11.617.
  • Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Proc-Syst Signal Image Video Technol. 2004; 38(1):35–44. doi: 10.1023/b:vlsi.0000028532.53893.82.
  • Vani V, Prashanth KVM. Image enhancement of wireless capsule endoscopy frames using image fusion technique. IETE J Res. 2018; 67(4):463–475. doi: 10.1080/03772063.2018.1554459.
  • V V, Prashanth KM. Color image enhancement techniques in wireless capsule endoscopy. In 2015 International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15); December IEEE; 2015. doi: 10.1109/ITACT.2015.7492674.
  • Sheet D, Garud H, Suveer A, et al. Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consumer Electron. 2010;56(4):2475–2480. doi: 10.1109/TCE.2010.5681130.
  • Ezatian R, Khaledyan D, Jafari K, et al. Image quality enhancement in wireless capsule endoscopy with adaptive fraction gamma transformation and unsharp masking filter. In: 2020 IEEE Global Humanitarian Technology Conference (GHTC); October IEEE; 2020. Available from: doi: 10.1109/GHTC46280.2020.9342851.
  • Deng G. A generalized unsharp masking algorithm. IEEE Trans Image Process. 2011; 20(5):1249–1261. doi: 10.1109/tip.2010.2092441.
  • Okuhata H, Nakamura H, Hara S, et al. Application of the real-time retinex image enhancement for endoscopic images. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July IEEE; 2013. Available from: doi: 10.1109/EMBC.2013.6610273.
  • and DI. Software engineering applications in gastroenterology. Global J Gastroenterol Hepatol. 2014;2(1):11–18. doi: 10.12970/2308-6483.2014.02.01.3.
  • Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell. 1990; 12(7):629–639. doi: 10.1109/34.56205.
  • You YL, Xu W, Tannenbaum A, et al. Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans Image Process. 1996;5(11):1539–1553. doi: 10.1109/83.541424.
  • Li B, Meng MQH. Wireless capsule endoscopy images enhancement via adaptive contrast diffusion. J Vis Commun Image Represent. 2012; 23(1):222–228. doi: 10.1016/j.jvcir.2011.10.002.
  • Vu H, Echigo T, Yagi K, et al. Image-enhanced capsule endoscopy preserving the original color tones. Berlin, Heidelberg: Springer; 2012. p. 35–43.
  • Imtiaz MS, Wahid KA. Color enhancement in endoscopic images using adaptive sigmoid function and space variant color reproduction. Comput Math Methods Med. 2015;2015:607407–607419. doi: 10.1155/2015/607407.
  • Slawinski PR, Oleynikov D, Terry BS. Intestinal biomechanics simulator for robotic capsule endoscope validation. J Med Eng Technol. 2014; 39(1):54–59. doi: 10.3109/03091902.2014.973619.
  • Koulaouzidis A, Iakovidis DK, Karargyris A, et al. Wireless endoscopy in 2020: will it still be a capsule? World J Gastroenterol. 2015;21(17):5119–5130. doi: 10.3748/wjg.v21.i17.5119.
  • Given. Imaging. PillcamTM capsule endoscopy user manual. Given Imaging 3950 Shackleford Road, Suite 500 Duluth GA 30096 USA; 2016. https://www.pillcamcrohnscapsule.eu/assets/pdf/DOC-2928-02-PillCam-Desktop-SWv9UMEN.pdf.
  • Than TD, Alici G, Zhou H, et al. A review of localization systems for robotic endoscopic capsules. IEEE Trans Biomed Eng. 2012;59(9):2387–2399. doi: 10.1109/tbme.2012.2201715.
  • Geng Y, Pahlavan K. Design, implementation, and fundamental limits of image and RF based wireless capsule endoscopy hybrid localization. IEEE Trans on Mobile Comput. 2016; 15(8):1951–1964. doi: 10.1109/TMC.2015.2483492.
  • Bao G, Pahlavan K, Mi L. Hybrid localization of microrobotic endoscopic capsule inside small intestine by data fusion of vision and RF sensors. IEEE Sensors J. 2015; 15(5):2669–2678. doi: 10.1109/JSEN.2014.2367495.
  • Liu L, Hu C, Cai W, et al. Capsule endoscope localization based on computer vision technique. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; September IEEE; 2009. doi: 10.1109/iembs.2009.5334803.
  • Spyrou E, Iakovidis DK. Homography-based orientation estimation for capsule endoscope tracking. In: 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings; July IEEE; 2012. doi: 10.1109/ist.2012.6295583.
  • Mackiewicz M, Berens J, Fisher M. Wireless capsule endoscopy color video segmentation. IEEE Trans Med Imaging. 2008; 27(12):1769–1781. doi: 10.1109/tmi.2008.926061.
  • Cunha JPS, Coimbra M, Campos P, et al. Automated topographic segmentation and transit time estimation in endoscopic capsule exams. IEEE Trans Med Imaging. 2008;27(1):19–27. doi: 10.1109/tmi.2007.901430.
  • Khan W, Kabir SML, Khan HA, et al. A localization algorithm for capsule endoscopy based on feature point tracking. In: 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec); December IEEE; 2016. Available from: doi: 10.1109/MEDITEC.2016.7835361.
  • Iakovidis DK, Spyrou E, Diamantis D, et al. Capsule endoscope localization based on visual features. In 13th IEEE International Conference on BioInformatics and BioEngineering; November IEEE; 2013. doi: 10.1109/bibe.2013.6701570.
  • Aghanouri M, Ghaffari A, Dadashi N. Image-based localization of the active wireless capsule endoscope inside the stomach. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE; 2017. doi: 10.1109/BHI.2017.7897193.
  • Subramanian V, Mannath J, Telakis E, et al. Efficacy of new playback functions at reducing small-bowel wireless capsule endoscopy reading times. Dig Dis Sci. 2012;57(6):1624–1628. doi: 10.1007/s10620-012-2074-y.
  • Muhammad K, Khan S, Kumar N, et al. Vision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challenges. Future Gener Comput Syst. 2020;113:266–280. doi: 10.1016/j.future.2020.06.048.
  • Hai V, Echigo T, Sagawa R, et al. Adaptive control of video display for diagnostic assistance by analysis of capsule endoscopic images. In 18th International Conference on Pattern Recognition (ICPR’06). IEEE; 2006. doi: 10.1109/icpr.2006.218.
  • Ozyoruk KB, Gokceler GI, Bobrow TL, et al. Endoslam dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med Image Anal. 2021;71:102058. Available from: https://www.sciencedirect.com/science/article/pii/S1361841521001043. doi: 10.1016/j.media.2021.102058.
  • Wimmer G, Tamaki T, Tischendorf J, et al. Directional wavelet based features for colonic polyp classification. Med Image Anal. 2016;31:16–36. doi: 10.1016/j.media.2016.02.001.
  • Zhou S, Yang H, Siddique MA, et al. A novel method for automatically locating the pylorus in the wireless capsule endoscopy. Biomed Tech (Berl). 2017;62(1):1–12. doi: 10.1515/bmt-2015-0080.
  • Dimas G, Spyrou E, Iakovidis DK, et al. Intelligent visual localization of wireless capsule endoscopes enhanced by color information. Comput Biol Med. 2017;89:429–440. doi: 10.1016/j.compbiomed.2017.08.27029.
  • Jagadeesan A, Sivaraman J. Formulation and statistical evaluation of an automated algorithm for locating small bowel tumours in wireless capsule endoscopy. Biocybernet Biomed Eng. 2018;38(4):782–793. doi: 10.1016/j.bbe.2018.07.003.
  • Koulaouzidis A, Iakovidis D, Yung D, et al. Novel experimental and software methods for image reconstruction and localization in capsule endoscopy. Endosc Int Open. 2018;06(02):E205–E210. doi: 10.1055/s-0043-121882.
  • Iakovidis DK, Dimas G, Karargyris A, et al. Deep endoscopic visual measurements. IEEE J Biomed Health Inform. 2019;23(6):2211–2219. doi: 10.1109/jbhi.2018.2853987.
  • V V, Prashanth KM. Ulcer detection in wireless capsule endoscopy images using deep CNN. J King Saud Univ - Comput Inform Sci. 2020;34(6):3319–3331. doi: 10.1016/j.jksuci.2020.09.008.
  • Oliveira M, Araujo H, Figueiredo IN, et al. Registration of consecutive frames from wireless capsule endoscopy for 3d motion estimation. IEEE Access. 2021;9:119533–119545. doi: 10.1109/ACCESS.2021.3108234.
  • Jain S, Seal A, Ojha A, et al. A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images. Comput Biol Med. 2021;137:104789. Available from: doi: 10.1016/j.compbiomed.2021.104789.
  • Muruganantham P, Balakrishnan SM. A survey on deep learning models for wireless capsule endoscopy image analysis. Int J Cognitive Comput Eng. 2021; 2:83–92. doi: 10.1016/j.ijcce.2021.04.002.
  • Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005.
  • Cave DR, Hakimian S, Patel K. Current controversies concerning capsule endoscopy. Dig Dis Sci. 2019; 64(11):3040–3047. doi: 10.1007/s10620-019-05791-4.
  • Li Z, Kamnitsas K, Glocker B. Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In: Lecture notes in computer science. Shenzhen (China): Springer International Publishing; 2019. p. 402–410.
  • Xu Q, Zhang M, Gu Z, et al. Overfitting remedy by sparsifying regularization on fully connected layers of CNNs. Neurocomputing. 2019;328:69–74. doi: 10.1016/j.neucom.2018.03.080.
  • Iakovidis DK, Georgakopoulos SV, Vasilakakis M, et al. Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification. IEEE Trans Med Imaging. 2018;37(10):2196–2210. doi: 10.1109/tmi.2018.2837002.
  • Xiao Z, Feng LN. A study on wireless capsule endoscopy for small intestinal lesions detection based on deep learning target detection. IEEE Access. 2020;8:159017–159026. doi: 10.1109/ACCESS.2020.3019888.
  • Sadasivan VS, Seelamantula CS. High accuracy patch-level classification of wireless capsule endoscopy images using a convolutional neural network In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); Apr. IEEE; 2019. doi: 10.1109/isbi.2019.8759324.
  • Jain S, Seal A, Ojha A, et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Comput Biol Med. 2020;127:104094. doi: 10.1016/j.compbiomed.2020.104094.
  • Chebli A, Djebbar A, Marouani HF. Semi-supervised learning for medical application: a survey. In 2018 International Conference on Applied Smart Systems (ICASS); Nov. IEEE; 2018. doi: 10.1109/ICASS.2018.8651980.
  • Zhou T, Ruan S, Canu S. A review: deep learning for medical image segmentation using multi-modality fusion. Array. 2019; 3–4:100004. doi: 10.1016/j.array.2019.100004.
  • Laiz P, Vitrià J, Wenzek H, et al. WCE polyp detection with triplet based embeddings. Comput Med Imaging Graph. 2020;86:101794. doi: 10.1016/j.compmedimag.2020.101794.
  • Gastrolab. Gastrolab Endoscopy Archives - Gastrolab. Available from: 2021. https://gastrolab.net.
  • Koulaouzidis A, Iakovidis D, Yung D, et al. KID project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc Int Open. 2017;05(06):E477–E483. doi: 10.1055/s-0043-105488.
  • Bernal J, Aymeric H. Gastrointestinal Image ANAlysis (GIANA) Angiodysplasia D&L challenge; 2017. Available from https://endovissub2017-giana.grand-challenge.org.
  • Angermann Q, Bernal J, Sánchez-Montes C, et al. Towards real-time polyp detection in colonoscopy videos: adapting still frame-based methodologies for video sequences analysis. In: Lecture notes in computer science. Québec City (QC): Springer International Publishing; 2017. p. 29–41.
  • Bernal J, Histace A, Masana M, et al. Polyp detection benchmark in colonoscopy videos using gtcreator: a novel fully configurable tool for easy and fast annotation of image databases. In: 32nd International Congress and Exhibition on Computer Assisted Radiology & Surgery; 2018.
  • Leenhardt R, Li C, Mouel JPL, et al. CAD-CAP: a 25,000-image database serving the development of artificial intelligence for capsule endoscopy. Endosc Int Open. 2020;08(03):E415–E420. doi: 10.1055/a-1035-9088.
  • Smedsrud PH, Thambawita V, Hicks SA, et al. Kvasir-capsule, a video capsule endoscopy dataset. Sci Data. 2021;8(1):142. doi: 10.1038/s41597-021-00920-z.
  • Rutter MD, Brookes M, Lee TJ, et al. Impact of the COVID-19 pandemic on UK endoscopic activity and cancer detection: a national endoscopy database analysis. Gut. 2020;70(3):537–543. doi: 10.1136/gutjnl-2020-322179.
  • Pless R. Using many cameras as one. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. IEEE Comput. Soc; 2003. doi: 10.1109/cvpr.2003.1211520.
  • Clipp B, Kim JH, Frahm JM, et al. Robust 6dof motion estimation for non-overlapping, multi-camera systems In: 2008 IEEE Workshop on Applications of Computer Vision; Jan. IEEE; 2008. doi: 10.1109/wacv.2008.4544011.
  • Lee GH, Fraundorfer F, Pollefeys M. Structureless pose-graph loop-closure with a multicamera system on a self-driving car. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; November IEEE; 2013. doi: 10.1109/iros.2013.6696407.
  • Kazik T, Kneip L, Nikolic J, et al. Real-time 6d stereo visual odometry with non-overlapping fields of view. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition; Jun. IEEE; 2012. doi: 10.1109/cvpr.2012.6247843.
  • Li H, Hartley R, Hak Kim J. A linear approach to motion estimation using generalized camera models. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition; Jun. IEEE; 2008. doi: 10.1109/cvpr.2008.4587545.
  • Miraldo P, Araujo H. Calibration of smooth camera models. IEEE Trans Pattern Anal Mach Intell. 2013; 35(9):2091–2103. doi: 10.1109/tpami.2012.258.
  • Grossberg M, Nayar S. A general imaging model and a method for finding its parameters. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001; Vol. 2; 2001. p. 108–115. Available from. doi: 10.1109/ICCV.2001.937611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.