Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 5
90
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhancement of benzo[a]pyrene mineralization: symbiotic biodegradation by Acinetobacter sp. strain HAP1 in Association with Cyanobacteriota sp. S66

ORCID Icon &
Pages 248-262 | Received 24 Dec 2023, Accepted 19 Mar 2024, Published online: 11 Apr 2024

References

  • Kumar, A. G.; Vijayakumar, L.; Joshi, G.; Magesh Peter, D.; Dharani, G.; Kirubagaran, R. Biodegradation of Complex Hydrocarbons in Spent Engine Oil by Novel Bacterial Consortium Isolated from Deep Sea Sediment. Bioresour. Technol. 2014, 170, 556–564. DOI: 10.1016/j.biortech.2014.08.008.
  • Ashiru, O. R.; Ogundare, M. O.; Ashiru, O. R.; Ogundare, M. O. An Assessment of Total Petroleum Hydrocarbon and Trace Metal Concentration in the Sediments of Ugbo Water Way, South Western Nigeria. Afr. J. Environ. Sci. Technol. 2019, 13, 13–21. DOI: 10.5897/AJEST2018.2578.
  • Ewerton, S.; Michel, R. R. S.; Antônio, R. V. J.; Laiane, S. S.; Morgana, F.; Marcelo, R. A. Polycyclic Aromatic Hydrocarbons (PAHs) in Superficial Water from a Tropical Estuarine System: Distribution, Seasonal Variations, Sources and Ecological Risk Assessment. Mar. Pollut. Bull. 2018, 127, 352–358.
  • Wang, C.; Zhang, Z.; He, S.; Tang, J.; Wang, R.; Liu, X. Environmental Fate of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Layers of Tar Balls in the Bohai Sea, China. J. Cleaner Prod. 2023, 403, 136803. DOI: 10.1016/j.jclepro.2023.136803.
  • Yang, N.; Yang, C.; Tan, T.; Wang, Q.; Lei, X. Histology Study and Transcriptome Analysis of the Testis of Loach (Misgurnus Anguillicaudatus) in Response to Phenanthrene Exposure. Ecotoxicol. Environ. Saf. 2022, 242, 113950. DOI: 10.1016/j.ecoenv.2022.113950.
  • Agarwal, T. Concentration Level, Pattern and Toxic Potential of PAHs in Traffic Soil of Delhi, India. J. Hazard. Mater. 2009, 171, 894–900. DOI: 10.1016/j.atmosenv.2007.08.022.
  • Qian, L.; Chen, B. Enhanced Oxidation of Benzo[a]Pyrene by Crude Enzyme Extracts Produced during Interspecific Fungal Interaction of Trametes Versicolor and Phanerochaete chrysosporium. J. Environ. Sci. 2012, 24, 1639–1646. DOI: 10.1016/s1001-0742(11)61056-5.
  • Wang, B.; Teng, Y.; Yao, H.; Christie, P. Detection of Functional Microorganisms in Benzene [a] Pyrene-Contaminated Soils Using DNA-SIP Technology. J. Hazard. Mater. 2021, 407, 124788. DOI: 10.1016/j.jhazmat.2020.124788.
  • Zhang, Q.; Meng, J.; Su, G.; Liu, Z.; Shi, B.; Wang, T. Source Apportionment and Risk Assessment for Polycyclic Aromatic Hydrocarbons in Soils at a Typical Coking Plant. Ecotoxicol. Environ. Saf. 2021, 222, 112509. DOI: 10.1016/j.ecoenv.2021.112509.
  • Gan, X.; Teng, Y.; Zhao, L.; Ren, W.; Chen, W.; Hao, J.; Christie, P.; Luo, Y. Influencing Mechanisms of Hematite on Benzo(a)Pyrene Degradation by the PAH-Degrading Bacterium Paracoccus sp. Strain HPD-2: Insight from Benzo(a)Pyrene Bioaccessibility and Bacteria Activity. J. Hazard. Mater. 2018, 359, 348–355. DOI: 10.1016/j.jhazmat.2018.07.070.
  • Rubio-Clemente, A.; Chica, E.; Peñuela, G. A. Photolysis of a Mixture of Anthracene and Benzo[a]Pyrene at Ultra-Trace Levels in Natural Water with Disinfection Purposes. J. Environ. Sci. 2020, 92, 79–94. DOI: 10.1016/j.jes.2020.02.002.
  • Cao, X.; Huo, S.; Zhang, H.; Zhao, X.; Pang, C.; Ma, C.; Zheng, J.; Wu, F. Intensive Land-Based Activities Increase the Potential Risk of Benzo[α]Pyrene (BaP) to Aquatic Ecosystems and Human Health in Coastal Areas of China. J. Cleaner Prod. 2023, 371, 133571. DOI: 10.1016/j.jclepro.2022.133571.
  • Wang, W.; Lin, J.; Shao, S.; Chen, H.; Dai, J.; Yang, Y. Enhanced Adsorption of Benzo (a) Pyrene in Soil by Porous Biochar: Adsorption Kinetics, Thermodynamics, and Mechanisms. J. Environ. Chem. Eng. 2023, 11, 109002. DOI: 10.1016/j.jece.2022.109002.
  • Mo, J.; Wan, M. T.; Au, D. W.-T.; Shi, J.; Tam, N.; Qin, X.; Cheung, N. K. M.; Lai, K. P.; Winkler, C.; Kong, R. Y.-C.; Seemann, F. Transgenerational Bone Toxicity in F3 Medaka (Oryzias Latipes) Induced by Ancestral Benzo[a]Pyrene Exposure: Cellular and Transcriptomic Insights. J. Environ. Sci. 2023, 127, 336–348. DOI: 10.1016/j.jes.2022.04.051.
  • Meng, H.; Li, G.; Wei, W.; Bai, Y.; Feng, Y.; Fu, M.; Guan, X.; Li, M.; Li, H.; Wang, C.; et al. Epigenome-Wide DNA Methylation Signature of Benzo[a]Pyrene Exposure and Their Mediation Roles in Benzo[a]Pyrene-Associated Lung Cancer Development. J. Hazard. Mater. 2021, 416, 125839. DOI: 10.1016/j.jhazmat.2021.125839.
  • Widziewicz, K.; Rogula-Kozlowska, W.; Loska, K.; Kociszewska, K.; Majewski, G. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland. Biomed. Environ. Sci. 2018, 31, 23–36. DOI: 10.3967/bes2018.003.
  • Choong, C. E.; Wong, K. T.; Yoon, S. Y.; Kim, H.; Shin, M.; Chang, Y.-Y.; Yang, J-k.; Kim, S.-H.; Jeon, B.-H.; Yoon, Y.; Jang, M. A Facile Acid Induced Water-Based Solvent by Improving Hydrophobicity for Simultaneous Remediating Total Petroleum Hydrocarbon, Heavy Metals and Benzo(a) Pyrene Contaminated Soil: Laboratory- and Pilot-Scale Studies. J. Cleaner Prod. 2021, 278, 123425. DOI: 10.1016/j.jclepro.2020.123425.
  • Xu, H.; Mu, X.; Ding, Y.; Tan, Q.; Liu, X.; He, J.; Gao, R.; Li, N.; Geng, Y.; Wang, Y.; Chen, X. Melatonin Alleviates Benzo (a) Pyrene-Induced Ovarian Corpus Luteum Dysfunction by Suppressing Excessive Oxidative Stress and Apoptosis. Ecotoxicol. Environ. Saf. 2021, 207, 111561. DOI: 10.1016/j.ecoenv.2020.111561.
  • Liu, X.; Liu, Y.; Li, S.; Zhang, A.; Liu, Z.; Li, Z. Metabolic Fates and Response Strategies of Microorganisms to Aromatic Compounds with Different Structures. Bioresour. Technol. 2022, 366, 128210. DOI: 10.1016/j.biortech.2022.128210.
  • Zhu, Y.; Hu, M.; Yin, L.; Qin, W.; Hu, X.; Lyu, S.; Dou, J. Multi-Omics Analyses Reveal Metabolic Pathways of Benzo[a]Pyrene Biodegradation under Sole or Mixed Carbon Sources. International Biodeterioration & Biodegradation. 2023, 184, 105665. DOI: 10.1016/j.ibiod.2023.10.
  • Haritash, A. K.; Kaushik, C. P. Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. J. Hazard. Mater. 2009, 169, 1–15. DOI: 10.1016/j.jhazmat.2009.03.137.
  • Touliabah, H. E.-S.; El-Sheekh, M. M.; Ismail, M. M.; El-Kassas, H. A Review of Microalgae- and Cyanobacteria-Based. Biodegradation of Organic Pollutants. Molecules. 2022, 27, 1141. DOI: 10.3390/molecules2703114.
  • Suresh, S. R.; Logeshwaran, P.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Pyrene Degradation by Chlorella sp. MM3 in Liquid Medium and Soil Slurry: Possible Role of Dihydrolipoamide Acetyltransferase in Pyrene Biodegradation. Algal Res. 2017, 23, 223–232. DOI: 10.1016/j.algal.2017.02.010.
  • Lu, X.-Y.; Li, B.; Zhang, T.; Fang, H. H. P. Enhanced Anoxic Bioremediation of PAHs-Contaminated Sediment. Bioresour. Technol. 2012, 104, 51–58. DOI: 10.1016/j.biortech.2011.10.011.
  • Kumari, S.; Regar, R. K.; Manickam, N. Mproved Polycyclic Aromatic Hydrocarbon Degradation in a Crude Oil by Individual and a Consortium of Bacteria. Bioresour. Technol. 2018, 254, 174–179. DOI: 10.1016/j.biortech.2018.01.075.
  • Pelmont, J. Biodégradations Et Métabolismes: Les Bactéries Pour Les Technologies De L’environnement. Edition EDP Science; France, 2005; p 593.
  • El-Kadi, A. I. Modeling Hydrocarbon Biodegradation in Tidal Aquifers with Water-Saturation and Heat Inhibition Effects. J. Contam. Hydrol. 2001, 51, 97–125. DOI: 10.1016/s0169-7722(01)00119-x.
  • Boyd, T. J.; Montgomery, M. T.; Spargo, B. J.; Smith, D. C.; Coffin, R. B.; Kelley, C. A.; Mueller, J. G. Effects of Oxygenation on Hydrocarbon Biodegradation in a Hypoxic Environment. Biorem. J. 2001, 5, 145–157. DOI: 10.1080/20018891079258.
  • Yong, J. J. J. Y.; Chew, K. W.; Khoo, K. S.; Show, P. L.; Chang, J.-S. Prospects and Development of Algal-Bacterial Biotechnology in Environmental Management and Protection. Biotechnol. Adv. 2021, 47, 107684. DOI: 10.1016/j.biotechadv.2020.107684.
  • Muñoz, R.; Guieysse, B. Algal–Bacterial Processes for the Treatment of Hazardous Contaminants: A Review. Water Res. 2006, 40, 2799–2815. DOI: 10.1016/j.watres.2006.06.011.
  • Hoff, F. H.; Snell, T. W. Plankton Culture Manual. Aqua Farms: Florida, USA, Fifth Ed., 2001; p 120.
  • Mahjoubi, M.; Aliyu, H.; Cappello, S.; Naifer, M.; Souissi, Y.; Cowan, D. A.; Cherif, A. The Genome of Alcaligenes aquatilis Strain BU33N: Insights into Hydrocarbon Degradation Capacity. PLoS One. 2019, 14, e0221574. DOI: 10.1371/journal.pone.0221574.
  • Mahjoubi, M.; Jaouani, A.; Guesmi, A.; Ben Amor, S.; Jouini, A.; Cherif, H.; Najjari, A.; Boudabous, A.; Koubaa, N.; Cherif, A. Hydrocarbonoclastic Bacteria Isolated from Petroleum Contaminated Sites in Tunisia: Isolation, Identification and Characterization of the Biotechnological Potential. N Biotechnol. 2013, 30, 723–733. DOI: 10.1016/j.nbt.2013.03.004.
  • Kumar, M. S.; Kaur, G.; Sandhu, A. K. Genomic DNA Isolation from Fungi, Algae, Plant, Bacteria and Human Blood Using CTAB. Int. J. Sci. Res. 2014, 3, 617–618.
  • Tian, Y.; Liu, H. J.; Zheng, T. L.; Kwon, K. K.; Kim, S. J.; Yan, C. L. PAHs Contamination and Bacterial Communities in Mangrove Surface Sediments of the Jiulong River Estuary, China. Mar. Pollut. Bull. 2008, 57, 707–715. DOI: 10.1016/j.marpolbul.2008.03.011.
  • DNA Sequencing by Capillary Electrophoresis, Applied Biosystems Chemistry Guide. Applied Biosystems: Foster City, USA . Third Edition, 2009
  • Belahmadi, M. S. O.; Abdessemed, A.; Gherib, A.; Charchar, N.; Houali, K.; Houhamdi, M. Spatiotemporal Assessment and Monitoring of Hydrocarbons Contamination of Water and Sediments in Skikda Bay (Algeria). Int J Environ Analy Chem 2021, 103, 1681–1699. DOI: 10.1080/03067319.2021.1879801.
  • Shrivastava, A.; Gupta, V. B. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21. DOI: 10.4103/2229-5186.79345.
  • Chen, J. F.; Wong, M. H.; Wong, Y. S.; Tam, N. F. Y. Multi-Factors on Biodegradation Kinetics of Polycyclic Aromatic Hydrocarbons (PAHs) by Sphingomonas sp. a Bacterial Strain Isolated from Mangrove Sediment. Mar. Pollut. Bull. 2008, 57, 695–702. DOI: 10.1016/j.marpolbul.2008.03.013.
  • Krivobok, S.; Kuony, S.; Willison, J. C.; Meyer, C.; Louwagie, M.; Jouanneau, Y. Identification of Pyrene-Induced Proteins in Mycobacterium sp. Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases. J. Bacteriol. 2003, 185, 3828–3841. DOI: 10.1128/JB.185.13.3828-3841.2003.
  • Maletić, S.; Dalmacija, B.; Rončević, S.; Agbaba, J.; Petrović, O. Degradation Kinetics of an Aged Hydrocarbon-Contaminated Soil. Water. Air. Soil Pollut. 2009, 202, 149–159. DOI: 10.1007/s11270-008-9965-8.
  • Yuan, S. Y.; Chang, B. V. Anaerobic Degradation of five Polycyclic Aromatic Hydrocarbons from River Sediment in Taiwan. J. Environ. Sci. Health. B. 2007, 42, 63–69. DOI: 10.1080/03601230601020860.
  • Ping, L.; Zhang, C.; Zhu, Y.; Wu, M.; Hu, X.; Li, Z.; Zhao, H. Biodegrading of Pyrene by a Newly Isolated Pseudomonas putida PL2. Biotechnol. Bioproc. E. 2011, 16, 1000–1008. DOI: 10.1007/s12257-010-0435-y.
  • Yessica, G.-P.; Alejandro, A.; Ronald, F.-C.; José, A. J.; Esperanza, M.-R.; Samuel, C.-S. J.; Remedios, M.-L. M.; Ormeño-Orrillo, E. Tolerance, Growth and Degradation of Phenanthrene and Benzo[a]Pyrene by Rhizobium tropici CIAT 899 in Liquid Culture Medium. Appl. Soil Ecol. 2013, 63, 105–111. DOI: 10.1016/j.apsoil.2012.09.010.
  • Marín, M.; Pedregosa, A.; Ríos, S.; Laborda, F. Study of Factors Influencing the Degradation of Heating Oil by Acinetobacter calcoaceticus MM5. Int. Biodeterior. Biodegradat. 1996, 38, 69–75. DOI: 10.1016/S0964-8305(96)00027-3.
  • Yan, Z.; Jiang, H.; Li, X.; Shi, Y. Accelerated Removal of Pyrene and Benzo[a]Pyrene in Freshwater Sediments with Amendment of Cyanobacteria-Derived Organic Matter. J. Hazard. Mater. 2014, 272, 66–74. DOI: 10.1016/j.jhazmat.2014.02.042.
  • Ludwig, W. Acid Techniques in Bacterial Systematics and Identification. Int. J. Food Microbiol. 2007, 125, I–XII. DOI: 10.1016/S0168-1605(08)00293-6.
  • Clarridge, J. E. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Rev. 2004, 17, 840–862, table of contents. DOI: 10.1128/CMR.17.4.840-862.2004.
  • Stackebrandt, E.; Goebel, B. M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. DOI: 10.1099/00207713-44-4-846.
  • Hubeny, J.; Korzeniewska, E.; Buta-Hubeny, M.; Zieliński, W.; Rolbiecki, D.; Harnisz, M. Characterization of Carbapenem Resistance in Environmental Samples and Acinetobacter Spp. isolates from Wastewater and River Water in Poland. Sci. Total Environ. 2022, 822, 153437. DOI: 10.1016/j.scitotenv.2022.153437.
  • Kämpfer, P. Encyclopedia of Food Microbiology. Second Edition. Elsevier: United Kingdom, 2014; p. 3248.
  • Asperger, O.; Kleber, H. P. Metabolism of Alkanes by Acinetobacter. In The Biology of Acinetobacter: Taxonomy, Clinical Importance, Molecular Biology, Physiology and Industrial Relevance, Towner, K. J., Bergogne-Bérézin, E. and Fewson, C. A., Eds. Plenum: New York, 1991; pp. 232–350
  • Atakpa, E. O.; Zhou, H.; Jiang, L.; Zhang, D.; Li, Y.; Zhang, W.; Zhang, C. Co-Culture of Acinetobacter sp. and Scedosporium sp. immobilized Beads for Optimized Biosurfactant Production and Degradation of Crude Oil. Environ. Pollut. 2023, 335, 122365. DOI: 10.1016/j.envpol.2023.122365.
  • Liu, X.; He, L.; Zhang, X.; Kong, D.; Chen, Z.; Lin, J.; Wang, C. Bioremediation of Petroleum-Contaminated Saline Soil by Acinetobacter baumannii and Talaromyces sp. and Functional Potential Analysis Using Metagenomic Sequencing. Environ. Pollut. 2022, 311, 119970. DOI: 10.1016/j.envpol.2022.119970.
  • Dahal, U.; Paul, K.; Gupta, S. The Multifaceted Genus Acinetobacter: From Infection to Bioremediation. J. Appl. Microbiol. 2023, 134, 1–18. DOI: 10.1093/jambio/lxad145.
  • Belahmadi, M. S. O.; Charchar, N.; Abdessemed, A.; Gherib, A. Impact of Petroleum Refinery on Aquatic Ecosystem of Skikda Bay (Algeria): Diversity and Abundance of Viable Bacterial Strains. Mar. Pollut. Bull. 2023, 188, 114704. DOI: 10.1016/j.marpolbul.2023.114704.
  • Czarny, J.; Staninska-Pięta, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Wolniewicz, A.; Marecik, R.; Ławniczak, Ł.; Chrzanowski, Ł. Acinetobacter sp. as the Key Player in Diesel Oil Degrading Community Exposed to PAHs and Heavy Metals. J. Hazard. Mater. 2020, 383, 121168. DOI: 10.1016/j.jhazmat.2019.121168.
  • Duval, C.; Hamlaoui, S.; Piquet, B.; Toutirais, G.; Yéprémian, C.; Reinhardt, A.; Duperron, S.; Demay, J.; Bernard, C. Characterization of Cyanobacteria Isolated from Thermal Muds of BalarucLes-Bains (France) and Description of a New Genus and Species Pseudochroococcus Couteii. Environ. Sci. Biol. 2020, 15, 1–19.
  • Hamlaoui, S.; Yéprémian, C.; Duval, C.; Marie, B.; Djédiat, C.; Piquet, B.; Bernard, C.; Duperron, S. The Culture Collection of Cyanobacteria and Microalgae at the French National Museum of Natural History: A Century Old but Still Alive and Kicking! Including in Memoriam: Professor Alain Couté. Cryptogamie, Algologie 2022, 43, 41–83. DOI: 10.5252/cryptogamie-algologie2022v43a3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.