Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 5
72
Views
0
CrossRef citations to date
0
Altmetric
Articles

Molecular docking analysis of chlorpyrifos at the human α7-nAChR and its potential relationship with neurocytoxicity in SH-SY5Y cells

, , & ORCID Icon
Pages 277-284 | Received 11 Mar 2024, Accepted 03 Apr 2024, Published online: 10 Apr 2024

References

  • Eaton, D. L.; Daroff, R. B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L. G.; Coyle, J.; McKhann, G.; Mobley, W. C.; Nadel, L.; et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit. Rev. Toxicol. 2008, 38(Suppl 2), 1–125. DOI: 10.1080/10408440802272158.
  • Ubaid Ur Rahman, H.; Asghar, W.; Nazir, W.; Sandhu, M. A.; Ahmed, A.; Khalid, N. A Comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci. Total Environ. 2021, 755, 142649. DOI: 10.1016/j.scitotenv.2020.142649.
  • Nandi, N. K.; Vyas, A.; Akhtar, M. J.; Kumar, B. The growing concern of chlorpyrifos exposures on human and environmental health. Pest. Biochem. Physiol. 2022, 185, 105138. DOI: 10.1016/j.pestbp.2022.105138.
  • Lemus, R.; Abdelghani, A. Chlorpyrifos: an unwelcome pesticide in our homes. Rev. Environ. Health. 2000, 15, 421–433. DOI: 10.1515/reveh.2000.15.4.421.
  • Whitney, K. D.; Seidler, F. J.; Slotkin, T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol. Appl. Pharmacol. 1995, 134, 53–62. DOI: 10.1006/taap.1995.1168.
  • Moser, V. C. Dose-response and time-course of neurobehavioral changes following oral chlorpyrifos in rats of different ages. Neurotoxicol. Teratol. 2000, 22, 713–723. DOI: 10.1016/s0892-0362(00)00087-8.
  • Caughlan, A.; Newhouse, K.; Namgung, U.; Xia, Z. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases. Toxicol. Sci. 2004, 78, 125–134. DOI: 10.1093/toxsci/kfh038.
  • van Melis, L. V. J.; Heusinkveld, H. J.; Langendoen, C.; Peters, A.; Westerink, R. H. S. Organophosphate insecticides disturb neuronal network development and function via non-AChE mediated mechanisms. Neurotoxicology. 2023, 94, 35–45. DOI: 10.1016/j.neuro.2022.11.002.
  • Souza, J.; Souza, T.; Quintans, I.; Farias, D. Network toxicology and molecular docking to investigate the non-AChE mechanisms of organophosphate-induced neurodevelopmental toxicity. Toxics 2023, 11, 710. DOI: 10.3390/toxics11080710.
  • Qiao, D.; Seidler, F. J.; Slotkin, T. A. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol. Appl. Pharmacol. 2005, 206, 17–26. DOI: 10.1016/j.taap.2004.11.003.
  • Silva, M. H. Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: a review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res. 2020, 112, 445–479. DOI: 10.1002/bdr2.1661.
  • Guardia-Escote, L.; Biosca-Brull, J.; Cabré, M.; Blanco, J.; Mladenova-Koleva, M.; Basaure, P.; Pérez-Fernández, C.; Sánchez-Santed, F.; Domingo, J. L.; Colomina, M. T. Developmental brain lipidomics is influenced by postnatal chlorpyrifos exposure and APOE genetic background in mice. Arch. Toxicol. 2023, 97, 2463–2475. DOI: 10.1007/s00204-023-03555-8.
  • Zhou, W.; Zhang, C.; Wang, P.; Deng, Y.; Dai, H.; Tian, J.; Wu, G.; Zhao, L. Chlorpyrifos-induced dysregulation of synaptic plasticity in rat hippocampal neurons. J. Environ. Sci. Health. B 2023, 58, 100–109. DOI: 10.1080/03601234.2023.2171236.
  • Prueitt, R. L.; Goodman, J. E.; Bailey, L. A.; Rhomberg, L. R. Hypothesis-based weight-of-evidence evaluation of the neurodevelopmental effects of chlorpyrifos. Crit. Rev. Toxicol. 2011, 41, 822–903. DOI: 10.3109/10408444.2011.616877.
  • Li, A. A.; Lowe, K. A.; McIntosh, L. J.; Mink,.; P.; J. Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. J. Toxicol. Environ. Health. B Crit. Rev. 2012, 15, 109–184. DOI: 10.1080/10937404.2012.645142.
  • Saunders, M.; Magnanti, B. L.; Correia Carreira, S.; Yang, A.; Alamo-Hernández, U.; Riojas-Rodriguez, H.; Calamandrei, G.; Koppe, J. G.; Krayer von Krauss, M.; Keune, H.; Bartonova, A. Chlorpyrifos and neurodevelopmental effects: a literature review and expert elicitation on research and policy. Environ. Health. 2012, 11(Suppl 1), S5. DOI: 10.1186/1476-069X-11-S1-S5.
  • Burke, R. D.; Todd, S. W.; Lumsden, E.; Mullins, R. J.; Mamczarz, J.; Fawcett, W. P.; Gullapalli, R. P.; Randall, W. R.; Pereira, E. F. R.; Albuquerque, E. X. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J. Neurochem. 2017, 142(Suppl 2), 162–177. DOI: 10.1111/jnc.14077.
  • Sarailoo, M.; Afshari, S.; Asghariazar, V.; Safarzadeh, E.; Dadkhah, M. Cognitive impairment and neurodegenerative diseases development associated with organophosphate pesticides exposure: a review study. Neurotox. Res. 2022, 40, 1624–1643. DOI: 10.1007/s12640-022-00552-0.
  • Tu, Y.; Yang, Y.; Wang, Y.; Wu, N.; Tao, J.; Yang, G.; You, M. Developmental exposure to chlorpyrifos causes neuroinflammation via necroptosis in mouse hippocampus and human microglial cell line. Environ. Pollut. 2022, 314, 120217. DOI: 10.1016/j.envpol.2022.120217.
  • Miwa, J. M.; Freedman, R.; Lester, H. A. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 2011, 70, 20–33. DOI: 10.1016/j.neuron.2011.03.014.
  • Pohanka, M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci. 2012, 13, 2219–2238. DOI: 10.3390/ijms13022219.
  • Slotkin, T. A.; Southard, M. C.; Adam, S. J.; Cousins, M. M.; Seidler, F. J. Alpha7 nicotinic acetylcholine receptors targeted by cholinergic developmental neurotoxicants: nicotine and chlorpyrifos. Brain Res. Bull. 2004, 64, 227–235. DOI: 10.1016/j.brainresbull.2004.07.005.
  • Papke, R. L.; Peng, C.; Kumar, A.; Stokes, C. NS6740, an α7 nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neurosci. Lett. 2018, 677, 6–13. DOI: 10.1016/j.neulet.2018.04.025.
  • Bencherif, M.; Narla, S. T.; Stachowiak, M. S. Alpha7 neuronal nicotinic receptor: a pluripotent target for diseases of the central nervous system. CNS Neurol. Disord. Drug Targets. 2014, 13, 836–845. DOI: 10.2174/1871527313666140711094525.
  • Crumpton, T. L.; Seidler, F. J.; Slotkin, T. A. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res. Dev. Brain Res. 2000, 121, 189–195. DOI: 10.1016/S0165-3806(00)00045-6.
  • Dominah, G. A.; McMinimy, R. A.; Kallon, S.; Kwakye, G. F. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of huntington’s disease. Neurotoxicology 2017, 60, 54–69. DOI: 10.1016/j.neuro.2017.03.004.
  • Fu, D. J.; Li, P.; Song, J.; Zhang, S. Y.; Xie, H. Z. Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues - chlorpyrifos and carbofuran via oxidative stress. Toxicol. In Vitro. 2019, 54, 338–344. DOI: 10.1016/j.tiv.2018.10.016.
  • Ki, Y. W.; Park, J. H.; Lee, J. E.; Shin, I. C.; Koh, H. C. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 2013, 218, 235–245. DOI: 10.1016/j.toxlet.2013.02.003.
  • Park, J. H.; Lee, J. E.; Shin, I. C.; Koh, H. C. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicol. Appl. Pharmacol. 2013, 268, 55–67. DOI: 10.1016/j.taap.2013.01.013.
  • Kopp-Schneider, A.; Prieto, P.; Kinsner-Ovaskainen, A.; Stanzel, S. Design of a testing strategy using non-animal based test methods: lessons learnt from the ACuteTox project. Toxicol. In Vitro. 2013, 27, 1395–1401. DOI: 10.1016/j.tiv.2012.08.016.
  • Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63. DOI: 10.1016/0022-1759.(83)90303-4
  • Wang, H.; Joseph, J. A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. DOI: 10.1016/s0891-5849(99)00107-0.
  • Taly, A.; Corringer, P.-J.; Guedin, D.; Lestage, P.; Changeux, J.-P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 2009, 8, 733–750. DOI: 10.1038/nrd2927.
  • Changeux, J. P.; Bertrand, D.; Corringer, P. J.; Dehaene, S.; Edelstein, S.; Léna, C.; Le Novère, N.; Marubio, L.; Picciotto, M.; Zoli, M. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res. Brain Res. Rev. 1998, 26, 198–216. DOI: 10.1016/s0165-0173(97)00040-4.
  • Miyazawa, A.; Fujiyoshi, Y.; Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003, 423, 949–955. DOI: 10.1038/nature01748.
  • Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 2005, 346, 967–989. DOI: 10.1016/j.jmb.2004.12.031.
  • Thompson, A. J.; Lester, H. A.; Lummis, S. C. R. The structural basis of function in Cys-loop 108 receptors. Q Rev. Biophys. 2010, 43, 449–499. DOI: 10.1017/S0033583510000168.
  • Gharpure, A.; Noviello, C. M.; Hibbs, R. E. Progress in nicotinic receptor structural biology. Neuropharmacology 2020, 171, 108086. DOI: 10.1016/j.neuropharm.2020.108086.
  • Ho, T. N. T.; Abraham, N.; Lewis, R. J. Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins. Front. Neurosci. 2020, 14, 609005. DOI: 10.3389/fnins.2020.609005.
  • Sakkiah, S.; Leggett, C.; Pan, B.; Guo, W.; Valerio, L. G.; Hong, H. Development of a nicotinic acetylcholine receptor nAChR α7 binding activity prediction model. J. Chem. Inf. Model. 2020, 60, 2396–2404. DOI: 10.1021/acs.jcim.0c00139.
  • Noviello, C. M.; Gharpure, A.; Mukhtasimova, N.; Cabuco, R.; Baxter, L.; Borek, D.; Sine, S. M.; Hibbs, R. E. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell 2021, 184, 2121–2134.e13. DOI: 10.1016/j.cell.2021.02.049.
  • Zhao, Y.; Liu, S.; Zhou, Y.; Zhang, M.; Chen, H.; Eric Xu, H.; Sun, D.; Liu, L.; Tian, C.; Tian, C. Structural basis of human α7 nicotinic acetylcholine receptor activation. Cell Res. 2021, 31, 713–716. DOI: 10.1038/s41422-021-00509-6.
  • Hinojosa, M. G.; Johansson, Y.; Jos, A.; Cameán, A. M.; Forsby, A. Effects of cylindrospermopsin, chlorpyrifos and their combination in a SH-SY5Y cell model concerning developmental neurotoxicity. Ecotoxicol. Environ. Saf. 2024, 269, 115804. DOI: 10.1016/j.ecoenv.2023.115804.
  • Dai, H.; Deng, Y.; Zhang, J.; Han, H.; Zhao, M.; Li, Y.; Zhang, C.; Tian, J.; Bing, G.; Zhao, L. PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 2015, 334, 72–80. DOI: 10.1016/j.tox.2015.06.003.
  • Park, J. H.; Ko, J.; Hwang, J.; Koh, H. C. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells. Neurotoxicology 2015, 51, 145–157. DOI: 10.1016/j.neuro.2015.10.008.
  • Raszewski, G.; Lemieszek, M. K.; Łukawski, K.; Juszczak, M.; Rzeski, W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin. Pharmacol. Toxicol. 2015, 116, 158–167. DOI: 10.1111/bcpt.12285.
  • Hinojosa, M. G.; Prieto, A. I.; Gutiérrez-Praena, D.; Moreno, F. J.; Cameán, A. M.; Jos, A. In Vitro assessment of the combination of cylindrospermopsin and the organophosphate chlorpyrifos on the human neuroblastoma SH-SY5Y cell line. Ecotoxicol. Environ. Saf. 2020, 191, 110222. DOI: 10.1016/j.ecoenv.2020.110222.
  • Xu, M. Y.; Wang, P.; Sun, Y. J.; Yang, L.; Wu, Y. J. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food Chem. Toxicol. 2017, 103, 246–252. DOI: 10.1016/j.fct.2017.03.013.
  • Zhao, M. W.; Yang, P.; Zhao, L. L. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y Cells: Implication for association between chlorpyrifos and parkinson’s disease. Environ. Toxicol. 2019, 34, 699–707. DOI: 10.1002/tox.22736.
  • Lee, J. E.; Park, J. H.; Jang, S. J.; Koh, H. C. Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. Toxicol. Appl. Pharmacol. 2014, 278, 159–171. DOI: 10.1016/j.taap.2014.04.021.
  • de Oliveira, M. R.; Peres, A.; Ferreira, G. C.; Schuck, P. F.; Bosco, S. M. Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotox. Res. 2016, 30, 367–379. DOI: 10.1007/s12640-016-9620-x.
  • Brasil, F. B.; de Almeida, F. J. S.; Luckachaki, M. D.; Dall’Oglio, E. L.; de Oliveira, M. R. Pinocembrin pretreatment counteracts the chlorpyrifos-induced HO-1 downregulation, mitochondrial dysfunction, and inflammation in the SH-SY5Y Cells. Metab. Brain Dis. 2021, 36, 2377–2391. DOI: 10.1007/s11011-021-00803-7.
  • Maier, A. Exposure criteria, encyclopedia of toxicology. (2nd ed.), Wexler, P., Ed.; Elsevier. 2005, 306–310. DOI: 10.1016/B0-12-369400-0/00406-3.
  • Yang, D.; Howard, A.; Bruun, D.; Ajua-Alemanj, M.; Pickart, C.; Lein, P. J. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicol. Appl. Pharmacol. 2008, 228, 32–41. DOI: 10.1016/j.taap.2007.11.005.
  • Hinojosa, M. G.; Gutiérrez-Praena, D.; López, S.; Prieto, A. I.; Moreno, F. J.; Jos, Á.; Cameán, A. M. Toxic effects of the cylindrospermopsin and chlorpyrifos combination on the differentiated SH-SY5Y human neuroblastoma cell line. Toxicon 2023, 227, 107091. DOI: 10.1016/j.toxicon.2023.107091.
  • Garcia, S. J.; Seidler, F. J.; Slotkin, T. A. Developmental neurotoxicity of chlorpyrifos: targeting glial cells. Environ. Toxicol. Pharmacol. 2005, 19, 455–461. DOI: 10.1016/j.etap.2004.12.007.
  • Gao, Q.; Liu, Y. J.; Guan, Z. Z. Oxidative stress might be a mechanism connected with the decreased alpha 7 nicotinic receptor influenced by high-concentration of fluoride in SH-SY5Y neuroblastoma cells. Toxicol. In Vitro. 2008, 22, 837–843. DOI: 10.1016/j.tiv.2007.12.017.
  • Navarro, E.; Buendia, I.; Parada, E.; León, R.; Jansen-Duerr, P.; Pircher, H.; Egea, J.; Lopez, M. G. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochem. Pharmacol. 2015, 97, 473–481. DOI: 10.1016/j.bcp.2015.07.022.
  • Del Pino, J.; Moyano, P.; Anadon, M. J.; García, J. M.; Díaz, M. J.; Gómez, G.; García, J.; Frejo, M. T. SN56 basal forebrain cholinergic neuronal loss after acute and long-term chlorpyrifos exposure through oxidative stress generation; P75(NTR) and α7-nAChRs alterations mediated partially by AChE variants disruption. Toxicology 2016, 353-354, 48–57. DOI: 10.1016/j.tox.2016.05.007.
  • Dajas-Bailador, F. A.; Mogg, A. J.; Wonnacott, S. Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. J. Neurochem. 2002, 81, 606–614. DOI: 10.1046/j.1471-4159.2002.00846.x.
  • Shen, J. X.; Yakel, J. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol. Sin. 2009, 30, 673–680. DOI: 10.1038/aps.2009.64.
  • Mugayar, A. A.; da Silva Guimarães, G.; de Oliveira, P. H. T.; Miranda, R. L.; Dos Santos, A. A. Apoptosis in the neuroprotective effect of α7 nicotinic receptor in neurodegenerative models. J. Neurosci. Res. 2023, 101, 1795–1802. DOI: 10.1002/jnr.25239.
  • King, J. R.; Kabbani, N. Alpha 7 nicotinic receptors attenuate neurite development through calcium activation of calpain at the growth cone. PLoS One. 2018, 13, e0197247. DOI: 10.1371/journal.pone.0197247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.