9,819
Views
2
CrossRef citations to date
0
Altmetric
FEATURES

Fish Bioenergetics 4.0: An R-Based Modeling Application

, , , &

REFERENCES

  • Annis, E. R., E. D. Houde, L. W. Harding Jr., M. E. Mallonee, and M. J. Wilberg. 2011. Calibration of a bioenergetics model linking primary production to Atlantic menhaden Brevoortia tyrannus growth in Chesapeake Bay. Marine Ecology Progress Series 437: 253–267.
  • Armstrong, J. B., and D. E. Schindler. 2011. Excess digestive capacity in predators reflects a life of feast and famine. Nature (London) 476: 84–87.
  • Arrhenius, F. 1998. Variable length of daily feeding period in bioenergetics modeling: a test with 0-group Baltic Herring. Journal of Fish Biology 52: 855–860.
  • Bajer, P. G., R. S. Hayward, G. W. Whitledge, and R. D. Zweifel. 2004. Simultaneous identification and correction of systematic error in bioenergetics models: demonstration with a White Crappie (Pomoxis annularis) model. Canadian Journal of Fisheries and Aquatic Sciences 61: 2168–2182.
  • Bartell, S. M., J. E. Breck, and R. H. Gardner. 1986. Individual parameter perturbation and error analysis of fish bioenergetics models. Canadian Journal of Fisheries and Aquatic Sciences 43: 160–168.
  • Beauchamp, D. A. 2009. Bioenergetic ontogeny: linking climate and mass-specific feeding to life-cycle growth and survival of salmon. Pages 53–72 in C. Zimmerman and C. C. Krueger, editors. Pacific salmon: ecology and management of western Alaska's populations. American Fisheries Society, Symposium 70, Bethesda, Maryland.
  • Beauchamp, D. A., M. G. LaRiviere, and G. L. Thomas. 1995. Evaluation of competition and predation as limits to the production of juvenile Sockeye Salmon in Lake Ozette. North American Journal of Fisheries Management 15: 121–135.
  • Beauchamp, D. A., D. J. Stewart, and G. L. Thomas. 1989. Corroboration of a bioenergetics model for Sockeye Salmon. Transactions of the American Fisheries Society 118: 597–607.
  • Beaudreau, A. H., and T. E. Essington. 2009. Development of a new field-based approach for estimating consumption rates of fishes and comparison with a bioenergetics model for Lingcod (Ophiodon elongates). Canadian Journal of Fisheries and Aquatic Sciences 66: 565–578.
  • Bevelhimer, M. S., and S. M. Adams. 1993. A bioenergetics analysis of diel vertical migration by kokanee salmon, Oncorhynchus nerka. Canadian Journal of Fisheries and Aquatic Sciences 50: 2336–2349.
  • Bevelhimer, M. S., and J. E. Breck. 2009. Centrarchid energetics. Pages 165–206 in S. J. Cooke and D. P. Philipp, editors. Centrachid fishes: diversity, biology and conservation. Wiley-Blackwell Scientific Publications, Chichester, UK.
  • Bevelhimer, M. S., R. A. Stein, and R. F. Carline. 1985. Assessing significance of physiological differences among three esocids with a bioenergetics model. Canadian Journal of Fisheries and Aquatic Sciences 42: 57–69.
  • Blaxter, J. H. S. 1960. The effects of extremes of temperature on herring larvae. Journal of Marine Biological Association of the United Kingdom 39: 605–609.
  • Bliesner, K. L. 2005. Trophic ecology and bioenergetics modeling of Sacramento Perch (Archoplites interruptus) in Abbotts Lagoon, Point Reyes National Seashore. Master's thesis. Humboldt State University, Humboldt, California.
  • Boisclair, D., and W. C. Leggett. 1989. The importance of activity in bioenergetics models applied to actively foraging fishes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1859–1867.
  • Brandt, S. B., and K. J. Hartman. 1993. Innovative approaches with bioenergetics models: future applications to fish ecology and management. Transactions of the American Fisheries Society 122: 731–735.
  • Breeggemann, J. J., M. A. Kaemingk, T. J. DeBates, C. P. Paukert, J. R. Krause, A. P. Letvin, T. M. Stevens, D. W. Willis, and S. R. Chipps. 2015. Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage. Ecology of Freshwater Fish 25: 487–499.
  • Brett, J. R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of Sockeye Salmon (Oncorhynchus nerka). American Zoologist 11: 99–113.
  • Buckley, T. W., and P. A. Livingston. 1994. A bioenergetics model of Walleye Pollock (Theraga chalcogramma) in the Eastern Bering Sea: structure and documentation. NOAA Technical Memorandum NMFS-AF-SC-37, Alaska Fisheries Science Center, Seattle, Washington.
  • Burke, B. J., and J. A. Rice. 2002. A linked foraging and bioenergetics model for Southern Flounder. Transactions of the American Fisheries Society 131: 120–131.
  • Canale, R. P., and J. E. Breck. 2013. Comments on proper (and improper) solutions of bioenergetic equations for modeling fish growth. Aquaculture 404–405: 41–46.
  • Canale, R. P., J. E. Breck, K. D. Shearer, and K. G. Neely. 2013. Validation of a bioenergetic model for juvenile salmonid hatchery production using growth data from independent laboratory feeding studies. Aquaculture 416–417: 228–237.
  • Cerino, D., A. S. Overton, J. A. Rice, and J. A. Morris, Jr. 2013. Bioenergetics and trophic impacts of the invasive Indo-Pacific lionfish. Transactions of the American Fisheries Society 142: 1522–1534.
  • Chang, W., J. Cheng, J. J. Allaire, Y. Xie, and J. McPherson. 2015. Shiny: web application framework for R. R package version 0.12.0. Available: http://CRAN.R-project.org/package=shiny. (July 2017).
  • Chipps, S. R., R. A. Klumb, and E. B. Wright. 2009. Development and application of juvenile Pallid Sturgeon bioenergetics model. South Dakota Department of Game, Fish and Parks, Pierre.
  • Chipps, S. R., and D. H. Wahl. 2004. Development and evaluation of a Western Mosquitofish bioenergetics model. Transactions of the American Fisheries Society 133: 1150–1162.
  • Chipps, S. R., and D. H. Wahl. 2008. Bioenergetics modeling in the 21st century: reviewing new insights and revisiting old constraints. Transactions of the American Fisheries Society 137: 298–313.
  • Cooke, S. L., and W. R. Hill. 2010. Can filter-feeding Asian carp invade the Laurentian Great Lakes? A bioenergetics modeling exercise. Freshwater Biology 55: 2138–2152.
  • Dieterman, D. J., W. C. Thorn, and C. S. Anderson. 2004. Application of a bioenergetics model for Brown Trout to evaluate growth in southeast Minnesota streams. Minnesota Department of Natural Resources Investigational Report 513: 1–27.
  • Duffy, W. G. 1998. Population dynamics, production, and prey consumption of Fathead Minnows (Pimephales promelas) in prairie wetlands: a bioenergetics approach. Canadian Journal of Fisheries and Aquatic Sciences 54: 15–27.
  • Fry, F. E. J. 1947. Effects of the environment on animal activity. The University of Toronto Press, Publications of the Ontario Fisheries Research Laboratory No. 68, Toronto.
  • Hansen, M. J., D. Boisclair, S. B. Brandt, S. W. Hewett, J. F. Kitchell, M. C. Lucas, and J. J. Ney. 1993. Applications of bioenergetics models to fish ecology and management: where do we go from here? Transactions of the American Fisheries Society 122: 1019–1030.
  • Hanson, P. C., T. B. Johnson, D. E. Schindler, and J. F. Kitchell. 1997. Fish bioenergetics 3.0 software for Windows. University of Wisconsin Center for Limnology, Sea Grant Institute, Technical Report WISCU-T-97-001, Madison, Wisconsin.
  • Hansson, S., L. G. Rudstam, J. F. Kitchell, M. Hildén, B. L. Johnson, and P. E. Peppard. 1996. Predation rates by North Sea Cod (Gadus morhua)—predictions from models on gastric evacuation and bioenergetics. ICES Journal of Marine Science 53: 107–114.
  • Hartman, K. J. 2017. Bioenergetics of Brown Bullhead in a changing climate. Transactions of the American Fisheries Society 146: 634–644.
  • Hartman, K. J., and S. B. Brandt. 1995. Comparative energetics and the development of bioenergetics models for sympatric estuarine piscivores. Canadian Journal of Fisheries and Aquatic Sciences 52: 1647–1666.
  • Hartman, K. J., and M. K. Cox. 2008. Refinement and testing of a Brook Trout bioenergetics model. Transactions of the American Fisheries Society 137: 357–363.
  • Hartman, K. J., and R. S. Hayward. 2007. Bioenergetics. Pages 515–560 in C. S. Guy and M. L. Brown, editors. Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, Maryland.
  • Hartman, K. J., and O. P. Jensen. 2017. Anticipating climate change impacts on Mongolian salmonids: bioenergetics models for Lenok and Baikal grayling. Ecology of Freshwater Fish 26: 383–396.
  • Hartman, K. J., and J. F. Kitchell. 2008. Bioenergetics modeling progress since the 1992 symposium. Transactions of the American Fisheries Society 137: 216–223.
  • Hartman, K. J., and J. A. Sweka. 2003. Development of a bioenergetics model for Appalachian Brook Trout. Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies 55(2001):38–51.
  • Hayes, J. W., J. D. Stark, and K. A. Shearer. 2000. Development and test of a whole-lifetime foraging and bioenergetics growth model for drift-feeding Brown Trout. Transactions of the American Fisheries Society 129: 315–332.
  • He, X. 1986. Population dynamics of Northern Redbelly Dace (Phoxinus eos), Finescale Dace (Phoxinus neogaeus), and Central Mudminnow (Umbra limi), in two manipulated lakes. Master's thesis. University of Wisconsin, Madison.
  • Heironimus, L. B. 2015. The development and application of a larval Pallid Sturgeon (Scaphirhynchus albus) bioenergetics model. Master's thesis. South Dakota State University, Brookings.
  • Hewett, S. W., and B. L. Johnson. 1987. A generalized bioenergetics model of fish growth for microcomputers. University of Wisconsin, Sea Grant Institute, Technical Report WIS-SG-87-245, Madison.
  • Hewett, S. W., and B. L. Johnson. 1992. Fish bioenergetics model 2: an upgrade of a generalized bioenergetics model of fish growth for microcomputers. University of Wisconsin, Sea Grant Institute, Technical Report WIS-SG92-250, Madison.
  • Hovel, R. A., D. A. Beauchamp, A. G. Hansen, and M. H. Sorel. 2015. Development of a bioenergetics model for the Threespine Stickleback. Transactions of the American Fisheries Society 144: 1311–1321.
  • Huuskonen, H., J. Karjalainen, N. Medgyesy, and W. Wieser. 1998. Energy allocation in larval and juvenile Coregonus lavaretus: validation of a bioenergetics model. Journal of Fish Biology 52: 962–972.
  • Ito, S.-I., M. J. Kishi, Y. Kurita, Y. Oozeki, Y. Yamanaka, B. A. Megrey, and F. E. Werner. 2004. Initial design for a fish bioenergetics model of Pacific Saury coupled to a lower trophic ecosystem model. Fisheries Oceanography 13(1): 111–124.
  • Ivlev, V. S. 1939. Balance of energy in carp. Zoologicheskii Zhurnal 18: 303–318.
  • Johnson, T. B. 1995. Long-term dynamics of the zooplanktivorous fish community in Lake Mendota, Wisconsin. Doctoral dissertation. University of Wisconsin–Madison.
  • Karas, P., and G. Thoresson. 1992. An application of a bioenergetics model to Eurasian Perch (Perca fluviatilis L.) 41: 217–230.
  • Karjalainen, J., D. Miserque, and H. Huuskonen. 1997. The estimation of food consumption in larval and juvenile fish: experimental evaluation of bioenergetics models. Journal of Fish Biology 51(A): 39–51.
  • Keskinen, T., J. Jääskeläinen, T. J. Marjomäki, T. Matilainen, and J. Karjalainen. 2008. A bioenergetics model for zander: Construction, validation, and evaluation of uncertainty caused by multiple input parameters. Transactions of the American Fisheries Society 137: 1741–1755.
  • Kishi, M. J., M. Kaeriyama, H. Ueno, and Y. Kamezawa. 2010. The effect of climate change on the growth of Japanese Chum Salmon (Oncorhynchus keta) using a bioenergetics model coupled with a three-dimensional lower trophic ecosystem model (NEM-URO). Deep Sea Research Part 2 57(13–14): 1257–1265.
  • Kitchell, J. F., and J. E. Breck. 1980. Bioenergetics model and foraging hypothesis for Sea Lamprey (Petromyzon marinus). Canadian Journal of Fisheries and Aquatic Sciences 37: 2159–2168.
  • Kitchell, J. F., J. F. Koonce, R. V. O'Neill, H. S. Shugart Jr., J. J. Magnuson, and R. S. Booth. 1974. Model of fish biomass dynamics. Transactions of the American Fisheries Society 103: 786–798.
  • Kitchell, J. F., D. E. Schindler, R. Ogutu-Ohwayo, and P. N. Reinthal. 1997. The Nile Perch in Lake Victoria: interactions between predation and fisheries. Ecological Applications 7: 653–664.
  • Kitchell, J. F., D. J. Stewart, and D. Weininger. 1977. Applications of a bioenergetics model to Yellow Perch (Perca flavescens) and Walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada 34: 1922–1935.
  • Klumb, R. A., L. G. Rudstam, and E. L. Mills. 2003. Comparison of Alewife young-of-the-year and adult respiration and swimming speed bioenergetics model parameters: implications of extrapolation. Transactions of the American Fisheries Society 132: 1089–1103.
  • Lantry, B. F., and D. J. Stewart. 1993. Ecological energetics of Rainbow Smelt in the Laurentian Great Lakes: an interlake comparison. Transactions of the American Fisheries Society 122: 951–976.
  • Lawrence, D. J., D. A. Beauchamp, and J. D. Olden. 2015. Life-stage specific physiology defines invasion extent of a riverine fish. Journal of Animal Ecology 84: 879–888.
  • Lee, V. A., and T. B. Johnson. 2005. Development of a bioenergetics model for the Round Goby (Neogobius melanostomus). Journal of Great Lakes Research 31: 125–134.
  • Luo, J., and S. B. Brandt. 1993. Bay Anchovy Anchoa mitchilli production and consumption in mid-Chesapeake Bay based on a bioenergetics model and acoustic measures of fish abundance. Marine Ecology Progress Series 98: 223–236.
  • Madenjian, C. P. 2011. Bioenergetics in ecosystems. Pages 1675–1680 in A. P. Farrell, editor. Encyclopedia of fish physiology: from genome to environment. Elsevier, Oxford, UK.
  • Madenjian, C. P., S. R. David, and S. A. Pothoven. 2012. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model. Transactions of the American Fisheries Society 141: 1328–1337.
  • Madenjian, C. P., S. A. Pothoven, and Y.-C. Kao. 2013. Reevaluation of lake trout and lake whitefish bioenergetics models. Journal of Great Lakes Research 39: 358–364.
  • Madenjian, C. P., D. V. O'Connor, S. A. Pothoven, P. J. Schneeberger, R. R. Rediske, J. P. O'Keefe, R. A. Bergstedt, R. L. Argyle, and S. B. Brandt. 2006. Evaluation of a Lake Whitefish bioenergetics model. Transactions of the American Fisheries Society 135: 61–75.
  • Madon, S. P., and D. A. Culver. 1993. Bioenergetics model for larval and juvenile Walleyes: an in situ approach with experimental ponds. Transactions of the American Fisheries Society 122: 797–813.
  • Madon, S. P., G. D. Williams, J. M. West, and J. B. Zedler. 2001. The importance of marsh access to growth of the California Killifish, Fundulus parvipinnis, evaluated through bioenergetics modeling. Ecological Modelling 135: 149–165.
  • Mateo, I. 2007. A bioenergetics based comparison of growth conversion efficiency of Atlantic Cod on Georges Bank and in the Gulf of Maine. Journal of Northwest Atlantic Fishery Science 38: 23–35.
  • Megrey, B. A., K. A. Rose, R. A. Klumb, D. E. Hay, F. E. Werner, D. L. Eslinger, and S. L. Smith. 2007. A bioenergetics-based population dynamics model of Pacific Herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient–phytoplankton–zooplankton model: description, calibration, and sensitivity analysis. Ecological Modelling 202: 144–164.
  • Mesa, M. G., L. K. Weiland, H. E. Christiansen, S. T. Sauter, and D. A. Beauchamp. 2013. Development and evaluation of a bioenergetics model for Bull Trout. Transactions of the American Fisheries Society 142: 41–49.
  • Moss, J. H. H. 2001. Development and application of a bioenergetics model for Lake Washington Prickly Sculpin. Master's thesis. University of Washington, Seattle.
  • Mukai, D., M. J. Kishi, S.-I. Ito, and Y. Kurita. 2007. The importance of spawning season on the growth of Pacific Saury: a model-based study using NEMURO.FISH. Ecological Modelling 202: 165–173.
  • Ney, J. J. 1993. Bioenergetics modeling today: growing pains on the cutting edge. Transactions of the American Fisheries Society 122: 736–748.
  • Niklitschek, E. J., and D. H. Secor. 2009. Dissolved oxygen, temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic Sturgeon in estuarine waters: I. Laboratory results. Journal of Experimental Marine Biology and Ecology 381:S150–S160.
  • Nitithamyong, C. 1988. Bioenergetics approach to the study of anabolic effects of 17α-methyltestosterone in Blue Tilapia, Oreochromis aureus. Doctoral dissertation. University of Wisconsin, Madison.
  • Offill, K. R. 2003. Development and applications of a bioenergetics model for the Plains Killifish (Fundulus zebrinus) and Red River Shiner (Notropis bairdi). Master's thesis. Texas Tech University, Lubbock.
  • Pääkkönen, J.-P. J., O. Tikkanen, and J. Karjalainen. 2003. Development and validation of a bioenergetics model for juvenile and adult Burbot. Journal of Fish Biology 63: 956–969.
  • Petersen, J. H., and J. F. Kitchell. 2001. Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon. Canadian Journal of Fisheries and Aquatic Sciences 58: 1831–1841.
  • Petersen, J. H., and C. P. Paukert. 2005. Development of a bioenergetics model for Humpback Chub and evaluation of water temperature changes in the Grand Canyon, Colorado River. Transactions of the American Fisheries Society 134: 960–974.
  • Petersen, J. H., and D. L. Ward. 1999. Development and corroboration of a bioenergetics model for Northern Pikeminnow feeding on juvenile salmonids in the Columbia River. Transactions of the American Fisheries Society 128: 784–801.
  • Plumb, J. M., and C. M. Moffitt. 2015. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook Salmon. Transactions of the American Fisheries Society 144: 323–330.
  • Politikos, D. V., G. Triantafyllou, G. Petihakis, K. Tsiaras, S. Somarakis, S.-I. Ito, and B. A. Megrey. 2011. Application of a bioenergetics growth model for European Anchovy (Engraulis encrasicolus) linked with a lower trophic level ecosystem model. Hydrobiologia 670: 141–163.
  • Post, J. 1990. Metabolic allometry of larval and juvenile Yellow Perch (Perca flavescens): in situ estimates and bioenergetic models. Canadian Journal of Fisheries and Aquatic Sciences 47(3): 554–560.
  • Qin, J., X. He, and W. Fast. 1997. A bioenergetics model for an air-breathing fish. Channa striatus. Environmental Biology of Fishes 50: 309–318.
  • R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Railsback, S. F., and K. A. Rose. 1999. Bioenergetics modeling of stream trout growth: temperature and food consumption effects. Transactions of the American Fisheries Society 128: 241–256.
  • Rand, P. S., D. J. Stewart, P. W. Seelbach, M. L. Jones, and L. R. Wedge. 1993. Modeling steelhead population energetics in Lakes Michigan and Ontario. Transactions of the American Fisheries Society 122: 977–1001.
  • Rice, J. A., J. E. Breck, S. M. Bartell, and J. F. Kitchell. 1983. Evaluating the constraints of temperature, activity and consumption on growth of Largemouth Bass. Environmental Biology of Fishes 9: 263–275.
  • Rippetoe, T. H. 1993. Production and energetics of Atlantic menhaden in Chesapeake Bay. Master's thesis. University of Maryland, College Park.
  • Rose, K. A., W. J. Kimmerer, K. P. Edwards, and W. A. Bennett. 2013. Individual-based modeling of Delta Smelt population dynamics in the upper San Francisco Estuary: II. Alternative baselines and good versus bad years. Transactions of the American Fisheries Society 142: 1260–1272.
  • Rose, K. A., E. S. Rutherford, D. S. McDermot, J. L. Forney, and E. L. Mills. 1999. Individual-based model of Yellow Perch and Walleye populations in Oneida Lake. Ecological Monographs 69: 127–154.
  • Roth, B. M., C. L. Hein, and M. J. Vander Zanden. 2006. Using bioenergetics and stable isotopes to assess the trophic role of Rusty Crayfish (Orconectes rusticus) in lake littoral zones. Canadian Journal of Fisheries and Aquatic Sciences 63: 335–344.
  • Rudstam, L. G. 1988. Exploring the dynamics of herring consumption in the Baltic: applications of an energetic model of fish growth. Kieler Meeresforsch Sonderheft 6: 312–322.
  • Rudstam, L. G. 1989. A bioenergetics model for Mysis growth and consumption applied to a Baltic population of Mysis mixta. Journal of Plankton Research 11: 971–983.
  • Rudstam, L. G., F. P. Binkowski, and M. A. Miller. 1994. A bioenergetics model for analysis of food consumption patterns of bloater in Lake Michigan. Transactions of the American Fisheries Society 123: 344–357.
  • Rudstam, L. G., A. Hetherington, and A. Mohammadian. 1999. Effect of temperature on feeding and survival of Mysis relicta. Journal of Great Lakes Research 25: 363–371.
  • Schneider, D. W. 1992. A bioenergetics model of zebra mussel, Dreissena polymorpha, growth in the Great Lakes Canadian Journal of Fisheries and Aquatic Sciences 49: 1406–1416.
  • Schoenebeck, C. W., S. R. Chipps, and M. L. Brown. 2008. Improvement of an esocid bioenergetics model for juvenile fish. Transactions of the American Fisheries Society 137: 1891–1897.
  • Sebring, S. H. 2002. Development and application of a bioenergetics model for Gizzard Shad. Master's thesis. Texas Tech University, Lubbock.
  • Shuter, B. J., and J. R. Post. 1990. Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society 119: 314–336.
  • Stafford, C. P., and T. A. Haines. 2001. Mercury contamination and growth rate in two piscivore populations. Environmental Toxicology and Chemistry 20: 2099–2101.
  • Stewart, D. J., and F. P. Binkowski. 1986. Dynamics of consumption and food conversion by Lake Michigan Alewives: an energetics-modeling synthesis. Transactions of the American Fisheries Society 115: 643–661.
  • Stewart, D. J., and M. Ibarra, 1991. Predation and production by salmonine fishes in Lake Michigan, 1978–88. Canadian Journal of Fisheries and Aquatic Sciences 48: 909–922.
  • Stewart, D. J. J. F. Kitchell, and L. B. Crowder. 1981. Forage fishes and their salmonid predators in Lake Michigan. Transactions of the American Fisheries Society 110: 751–763.
  • Stewart, D. J., D. Weininger, D. V. Rottiers, and T. A. Edsall. 1983. An energetics model for Lake Trout, Salvelinus namaycush: application to the Lake Michigan population Canadian Journal of Fisheries and Aquatic Sciences 40: 681–698.
  • Tarvainen, M., A. Anttalainen, H. Helminen, T. Keskinen, J. Sarvala, I. Vaahto, and J. Karjalainen. 2008. A validated bioenergetics model for Ruffe Gymnocephalus cernuus and its application to a northern lake. Journal of Fish Biology 73: 536–556.
  • Trudel, M., and D. Boisclair. 1994. Seasonal consumption by dace (Phoxinus eos × P. neogaeus): a comparison between field and bioenergetics model estimates. Canadian Journal of Fisheries and Aquatic Sciences 51: 2558–2567.
  • Trudel, M., and J. B. Rasmussen. 2006. Bioenergetics and mercury dynamics in fish: a modeling perspective. Canadian Journal of Fisheries and Aquatic Sciences 63: 1890–1902.
  • Tyler, J. A., and M. B. Bolduc. 2008. Individual variation in bioenergetics rates of young-of-year Rainbow Trout. Transactions of the American Fisheries Society 137: 314–323.
  • Whitledge, G. W., R. S. Hayward, and R. D. Zweifel. 2003. Development and laboratory evaluation of a bioenergetics model for subadult and adult Smallmouth Bass. Transactions of the American Fisheries Society 132: 316–325.
  • Winberg, G. G. 1956. Rate of metabolism and food requirements of fishes. Fisheries Research Board of Canada, Translation Series 194, Biological Station, Nanaimo, British Columbia, Canada.
  • Zweifel, R. D. 2000. Development and evaluation of a bioenergetics model for White Crappie. Master's thesis. University of Missouri, Columbia.
  • Zweifel, R. D., A. M. Gascho Landis, R. S. Hale, and R. A. Stein. 2010. Development and evaluation of a bioenergetics model for saugeye. Transactions of the American Fisheries Society 139: 855–867.