63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development and optimization of Clitoria teratea synthesized silver nanoparticles and its application to nanogel systems for wound healing

, , , &
Pages 181-191 | Received 08 Dec 2023, Accepted 16 Jan 2024, Published online: 19 Feb 2024

References

  • Percival SL, Suleman L, Vuotto C, et al. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64(Pt 4):323–334. doi: 10.1099/jmm.0.000032.
  • Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials. 2019;12(16):2540. doi: 10.3390/ma12162540.
  • Veeraraghavan VP, Periadurai ND, Karunakaran T, et al. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci. 2021;28(7):3633–3640. doi: 10.1016/j.sjbs.2021.05.007.
  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610. doi: 10.1007/s12325-017-0478-y.
  • Toppo FS, Pawar RS. Novel drug delivery strategies and approaches for wound healing managements. J Crit Rev. 2015;2:12–20.
  • Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559:23–36. doi: 10.1016/j.ijpharm.2019.01.019.
  • Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20(4):865. doi: 10.3390/ijms20040865.
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12(8):1823–1838. doi: 10.1016/j.arabjc.2014.12.014.
  • Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2):449. doi: 10.3390/ijms20020449.
  • Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020;15(1):819–839. doi: 10.1515/biol-2020-0094.
  • Berthet M, Gauthier Y, Lacroix C, et al. Nanoparticle-based dressing: the future of wound treatment?. Trends Biotechnol. 2017;35(8):770–784. doi: 10.1016/j.tibtech.2017.05.005.
  • Dawadi S, Katuwal S, Gupta A, et al. Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomater. 2021;2021:1–23. doi: 10.1155/2021/6687290.
  • Sood R, Chopra DS. Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater Sci Eng C Mater Biol Appl. 2018;92:575–589. doi: 10.1016/j.msec.2018.06.070.
  • Bayuo J, Abukari MA, Pelig-Ba KB. Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Appl Water Sci. 2020;10(6):135. doi: 10.1007/s13201-020-01213-3.
  • Ahmed S, Ahmad M, Swami BL, et al. Green synthesis of silver nanoparticles using azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016;9(1):1–7. doi: 10.1016/j.jrras.2015.06.006.
  • Jamil K, Khattak SH, Farrukh A, et al. Biogenic synthesis of silver nanoparticles using Catharanthus roseus and its cytotoxicity effect on vero cell lines. Molecules. 2022;27(19):6191. doi: 10.3390/molecules27196191.
  • Jeyaraj EJ, Nathan S, Lim YY, et al. Antibiofilm properties of Clitoria ternatea flower anthocyanin-rich fraction towards Pseudomonas aeruginosa. Access Microbiol. 2022;4(4):000343. doi: 10.1099/acmi.0.000343.
  • Daphne J, Francis A, Mohanty R, et al. Green synthesis of antibacterial silver nanoparticles using yeast isolates and its characterization. Res J Pharm Technol. 2018;11(1):83–92. doi: 10.5958/0974-360X.2018.00016.1.
  • El-Naggar Nel A, Abdelwahed NA. Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes. J Microbiol. 2014;52(1):53–63. doi: 10.1007/s12275-014-3410-z.
  • Vidana Gamage GC, Lim YY, Choo WS. Anthocyanins from Clitoria ternatea flower: biosynthesis, extraction, stability, antioxidant activity, and applications. Front Plant Sci. 2021;12:792303. doi: 10.3389/fpls.2021.792303.
  • Nikaeen G, Yousefinejad S, Rahmdel S, et al. Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Sci Rep. 2020;10(1):9642. doi: 10.1038/s41598-020-66357-3.
  • Kubiński K, Górka K, Janeczko M, et al. Silver is not equal to silver: synthesis and evaluation of silver nanoparticles with low biological activity, and their incorporation into C12alanine-based hydrogel. Molecules. 2023;28(3):1194. doi: 10.3390/molecules28031194.
  • Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci. 2020;284:102246. doi: 10.1016/j.cis.2020.102246.
  • Irimia T, Dinu-Pîrvu CE, Ghica MV, et al. Chitosan-based in situ gels for ocular delivery of therapeutics: a state-of-the-art review. Mar Drugs. 2018;16(10):373. doi: 10.3390/md16100373.
  • Singh TP, Ahmad FJ, Jain GK, et al. Formulation development and characterization of nanoemulsion-based gel for topical application of raloxifene hydrochloride. IJPER. 2021;55(4):996–1007. doi: 10.5530/ijper.55.4.200.
  • Gavan A, Colobatiu L, Hanganu D, et al. Development and evaluation of hydrogel wound dressings loaded with herbal extracts. Processes. 2022;10(2):242. doi: 10.3390/pr10020242.
  • Badhwar R, Singh R, Tinku Popli H. Implementation of quality by design (QbD) approach in development of QCT-SMEDDS with combination of AgNPs for diabetic foot ulcer management. IJPER. 2021;55(4):1207–1223.
  • Alven S, Buyana B, Feketshane Z, et al. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics. 2021;13(7):964. doi: 10.3390/pharmaceutics13070964.
  • Bold BE, Urnukhsaikhan E, Mishig-Ochir T. Biosynthesis of silver nanoparticles with antibacterial, antioxidant, anti-inflammatory properties and their burn wound healing efficacy. Front Chem. 2022;10:972534. doi: 10.3389/fchem.2022.972534.
  • Adebayo-Tayo B, Salaam A, Ajibade A. Green synthesis of silver nanoparticle using oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon. 2019;5(10):e02502. doi: 10.1016/j.heliyon.2019.e02502.
  • Ameeduzzafar ANK, Imam SS, et al. Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: Box-Behnken optimization, in vitro characterization, HET-CAM irritation, and antimicrobial assessment. AAPS Pharm Sci Tech. 2020;21(5):167.
  • Vaithanomsat P, Boonlum N, Chaiyana W, et al. Mushroom β-glucan recovered from antler-type fruiting body of Ganoderma lucidum by enzymatic process and its potential biological activities for cosmeceutical applications. Polymers. 2022;14(19):4202. doi: 10.3390/polym14194202.
  • Wilson TD, Steck WF. A modified HET-CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem Toxicol. 2000;38(10):867–872. doi: 10.1016/S0278-6915(00)00091-0.
  • Guidea A, Moţ AC, Sarbu C. Comprehensive assessment of antioxidant and chelating capacity of some biogenic amines and related drugs. Stud Univ Babes-Bolyai Chem. 2020;65(3):101–117.
  • Dawbaa S, Aybastıer Ö, Demir C. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1051:84–91. doi: 10.1016/j.jchromb.2017.03.014.
  • Chutoprapat R, Chan LW, Heng PW. Ex-vivo permeation study of chlorin e6-polyvinylpyrrolidone complexes through the chick chorioallantoic membrane model. J Pharm Pharmacol. 2014;66(7):943–953. doi: 10.1111/jphp.12222.
  • Badhwar R, Mangla B, Neupane YR, et al. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. Nanotechnology. 2021;32(50):505102. doi: 10.1088/1361-6528/ac2536.
  • Tyavambiza C, Meyer M, Meyer S. Cellular and molecular events of wound healing and the potential of silver based nanoformulations as wound healing agents. Bioengineering. 2022;9(11):712. doi: 10.3390/bioengineering9110712.
  • Zhang XF, Liu ZG, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534.
  • Naveed M, Bukhari B, Aziz T, et al. Green synthesis of silver nanoparticles using the plant extract of Acer oblongifolium and study of its antibacterial and antiproliferative activity via mathematical approaches. Molecules. 2022;27(13):4226. doi: 10.3390/molecules27134226.
  • Fathalla D, Youssef EMK, Soliman GM. Liposomal and ethosomal gels for the topical delivery of anthralin: preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics. 2020;12(5):446. doi: 10.3390/pharmaceutics12050446.
  • Dantas MG, Reis SA, Damasceno CM, et al. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci World J. 2016;2016:7394685–7394684. doi: 10.1155/2016/7394685.
  • Padalia H, Chanda S. Synthesis of silver nanoparticles using Ziziphus nummularia leaf extract and evaluation of their antimicrobial, antioxidant, cytotoxic and genotoxic potential (4-in-1 system). Artif Cells Nanomed Biotechnol. 2021;49(1):354–366. doi: 10.1080/21691401.2021.1903478.
  • Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2015;134:310–315. doi: 10.1016/j.saa.2014.06.046.
  • Chowdhury S, Yusof F, Faruck MO, et al. Process optimization of silver nanoparticle synthesis using response surface methodology. Proc Eng. 2016;148:992–999. doi: 10.1016/j.proeng.2016.06.552.
  • Bao Y, He J, Song K, et al. Plant-Extract-Mediated synthesis of metal nanoparticles. J Chem. 2021;2021:1–14. doi: 10.1155/2021/6562687.
  • Wang X, Yuan L, Deng H, et al. Structural characterization and stability study of green synthesized starch stabilized silver nanoparticles loaded with isoorientin. Food Chem. 2021;338:127807–127809. doi: 10.1016/j.foodchem.2020.127807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.