83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development and characterization of 3D printed ethylene vinyl acetate (EVA) as drug delivery device for the treatment of overactive bladder

, , , , &
Pages 285-296 | Received 19 Oct 2023, Accepted 23 Jan 2024, Published online: 14 Mar 2024

References

  • Hsu CC, Chuang YC, Chancellor MB. Intravesical drug delivery for dysfunctional bladder. Int J Urol. 2013;20(6):552–562. doi: 10.1111/iju.12085.
  • Pharmaceutical composition for sustained release of a peptide drug. Expert Opin Ther Pat. 1994;4(10):1275–1276.
  • Chien YW. In vitro-in vivo correlation on the subcutaneous release of progestins from silicone capsules. Chem Pharm Bull. 1976;24(7):1471–1479. doi: 10.1248/cpb.24.1471.
  • Cima MJ, Lee H. Implantable device with intravesical tolerability and methos of treatment. US Patent 8,679,094. 2014.
  • Lee SH, Choy YB. Implantable devices for sustained, intravesical drug delivery. Int Neurourol J. 2016;20(2):101–106. doi: 10.5213/inj.1632664.332.
  • Abbasnezhad N, Shirinbayan M, Tcharkhtchi A, et al. In vitro study of drug release from various loaded polyurethane samples and subjected to different non-pulsed flow rates. J Drug Delivery Sci Technol. 2020;55:101500. doi: 10.1016/j.jddst.2020.101500.
  • Yang Y, Qiao X, Huang R, et al. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials. 2020;230:119618. doi: 10.1016/j.biomaterials.2019.119618.
  • Huh BK, Kim BH, Kim CR, et al. Elastic net of polyurethane strands for sustained delivery of triamcinolone around silicone implants of various sizes. Mater Sci Eng, C. 2020;109:110565.
  • Genina N, Holländer J, Jukarainen H, et al. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63. doi: 10.1016/j.ejps.2015.11.005.
  • Stewart SA, Domínguez-Robles J, Donnelly RF, et al. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12):1379. doi: 10.3390/polym10121379.
  • Kumar N, Jain PK, Tandon P, et al. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). J Manuf Processes. 2018;35:317–326. doi: 10.1016/j.jmapro.2018.08.013.
  • Maurizii G, Moroni S, Khorshid S, et al. 3D-printed EVA-based patches manufactured by direct powder extrusion for personalized transdermal therapies. Int J Pharm. 2023;635:122720. doi: 10.1016/j.ijpharm.2023.122720.
  • de Carvalho Rodrigues V, Guterres IZ, Savi BP, et al. 3D-printed EVA devices for antiviral delivery and herpes virus control in genital infection. Viruses. 2022;14(11):2501. doi: 10.3390/v14112501.
  • Dikono A. Long-term safety of extended-release oxybutynin chloride in a community-dwelling population of participants with overactive bladder: a one-year study. Int J Urol Nephrol. 2002;34(1):43–49.
  • Tang M, Hou J, Lei L, et al. Preparation, characterization and properties of partially hydrolyzed ethylene vinyl acetate copolymer films for controlled drug release. Int J Pharm. 2010;400(1–2):66–73. doi: 10.1016/j.ijpharm.2010.08.031.
  • Tang Y, Chen L, Zhao K, et al. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration. Compos Sci Technol. 2016;125:100–107. doi: 10.1016/j.compscitech.2016.02.005.
  • Kaduk JA, Boaz NC, Gindhart AM, et al. Crystal structure of oxybutynin hydrochloride hemihydrate, C 22 H 32 NO 3 Cl(H 2 O). Powder Diffr. 2019;34(1):50–58. doi: 10.1017/S0885715618000842.
  • Khire A, Vavia P. Electron capture detection of oxybutynin in plasma: precolumn derivatization approach and application to a pharmacokinetic study. Anal Methods. 2014;6(5):1455. doi: 10.1039/c3ay41796d.
  • Canavesi R, Aprile S, Giovenzana GB, et al. New insights in oxybutynin chemical stability: identification in transdermal patches of a new impurity arising from oxybutynin N-oxide rearrangement. Eur J Pharm Sci. 2016;84:123–131. doi: 10.1016/j.ejps.2016.01.015.
  • Reyes-Labarta JA, Olaya MM, Marcilla A. DSC and TGA study of the transitions involved in the thermal treatment of binary mixtures of PE and EVA copolymer with a crosslinking agent. Polymer. 2006;47(24):8194–8202. doi: 10.1016/j.polymer.2006.09.054.
  • Helbling IM, Ibarra JCD, Luna JA. Evaluation and optimization of progesterone release from intravaginal rings using response surface methodology. J Drug Delivery Sci Technol. 2015;29:218–225. doi: 10.1016/j.jddst.2015.08.002.
  • Stark W, Jaunich M. Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym Test. 2011;30(2):236–242. doi: 10.1016/j.polymertesting.2010.12.003.
  • Dedroog S, Pas T, Vergauwen B, et al. Solid-state analysis of amorphous solid dispersions: why DSC and XRPD may not be regarded as stand-alone techniques. J Pharm Biomed Anal. 2020;178:112937. doi: 10.1016/j.jpba.2019.112937.
  • Sa F. Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends. Eur Polym J. 2008;44:1834–1842.
  • Salmoria GV, Ghizoni GB, Gindri IM, et al. Hot extrusion of PE/fluorouracil implantable rods for targeted drug delivery in cancer treatment. Polym Bull. 2019;76(4):1825–1838. doi: 10.1007/s00289-018-2451-6.
  • Salmoria GV, Vieira FE, Muenz EA, et al. Additive manufacturing of PE/fluorouracil/progesterone intrauterine device for endometrial and ovarian cancer treatments. Polym Test. 2018;71:312–317. doi: 10.1016/j.polymertesting.2018.09.023.
  • Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–444.
  • Helbling IM, Ibarra JCD, Luna JA. The optimization of an intravaginal ring releasing progesterone using a mathematical model. Pharm Res. 2014;31(3):795–808. doi: 10.1007/s11095-013-1201-6.
  • Williams NA, Lee KM, Allender CJ, et al., Investigating detrusor muscle concentrations of oxybutynin after intravesical delivery in an ex vivo porcine model. J Pharm Sci. 104(7):2233–2240. doi: 10.1002/jps.24471.
  • Burns R, Peterson K, Sanders L. A one year controlled release implant for the luteinizing hormone releasing hormone superagonist RS-49947. I. Implant characterization and analysis of in vitro results. J Controlled Release. 1990;14(3):221–232. doi: 10.1016/0168-3659(90)90162-M.
  • Zhou T, Lewis H, Foster RE, et al. Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J Control Release. 1998;55(2-3):281–295. doi: 10.1016/s0168-3659(98)00061-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.