106
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An empirical predictive model for determining the aqueous solubility of BCS class IV drugs in amorphous solid dispersions

, , &
Pages 236-247 | Received 12 Dec 2023, Accepted 02 Feb 2024, Published online: 14 Feb 2024

References

  • Di L, Kerns EH. Profiling drug-like properties in discovery research. Curr Opin Chem Biol. 2003;7(3):402–408. doi: 10.1016/s1367-5931(03)00055-3.
  • Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract1PII of original article: s 0169-409X(96)00487-5. The article was originally published in advanced drug delivery reviews 25 (1997) 3–14.1. Adv Drug Deliv Rev. 2001;25(1):3–14. doi: 10.1016/S0169-409X(96)00487-5.
  • Curatolo W. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm Sci Technol Today. 1998;1(9):387–393. doi: 10.1016/S1461-5347(98)00097-2.
  • Heimbach T, Fleisher D, Kaddoumi A. Overcoming poor aqueous solubility of drugs for oral delivery. Prodrugs: challenges and Rewards Part. 2007;1:157–215.
  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–249. doi: 10.1016/s1056-8719(00)00107-6.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi: 10.1016/S0169-409X(96)00423-1.
  • Warnken Z, Smyth HDC, Williams RO. Route-specific challenges in the delivery of poorly water-soluble drugs. AAPS AdvPharm Sci Ser. 2016;22:1–39.
  • Ghadi R, Dand N. BCS class IV drugs: highly notorious candidates for formulation development. J Control Release. 2017;248:71–95. doi: 10.1016/j.jconrel.2017.01.014.
  • Chio WL, Riegelman S. Pharmaceutical application of solid dispersion system. J Pharm Sci. 1971;60(9):1281–1302. doi: 10.1002/jps.2600600902.
  • Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727.
  • Shejul AA, Deshmane S, Biyani K. Modified natural carrier in solid dispersion for enhancement of solubility of poorly water soluble drugs. J Drug Delivery Ther. 2014;4(1):111–116. doi: 10.22270/jddt.v4i1.749.
  • Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10(3):359–369. doi: 10.34172/apb.2020.044.
  • Singh D, Bedi N, Tiwary AK. Enhancing solubility of poorly aqueous soluble drugs: critical appraisal of techniques. J Pharm Investig. 2018;48(5):509–526. doi: 10.1007/s40005-017-0357-1.
  • Singh A, Worku ZA, Van Den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv. 2011;8(10):1361–1378. doi: 10.1517/17425247.2011.606808.
  • de Alencar Danda LJ, de Medeiros Batista L, Melo VCS, et al. Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. Eur J Pharm Sci. 2019;133:79–85. doi: 10.1016/j.ejps.2019.03.012.
  • Figueirêdo CBM, Nadvorny D, de Medeiros Vieira ACQ, et al. Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. Int J Pharm. 2017;525(1):32–42. doi: 10.1016/j.ijpharm.2017.04.021.
  • Frank KJ, Rosenblatt KM, Westedt U, et al. Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: true supersaturation vs. apparent solubility enhancement. Int J Pharm. 2012;437(1–2):288–293. doi: 10.1016/j.ijpharm.2012.08.014.
  • Korn C, Balbach S. Compound selection for development–is salt formation the ultimate answer? Experiences with an extended concept of the “100 mg approach. Eur J Pharm Sci. 2014;57:257–263. doi: 10.1016/j.ejps.2013.08.040.
  • Six K, Verreck G, Peeters J, et al. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast‐and slow‐dissolving polymers. J Pharm Sci. 2004;93(1):124–131. doi: 10.1002/jps.10522.
  • Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–142. doi: 10.1016/j.addr.2016.03.006.
  • Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404. doi: 10.1023/a:1007516718048.
  • Hoffman JD. Thermodynamic driving force in nucleation and growth processes. J Chem Phys. 1958;29(5):1192–1193. doi: 10.1063/1.1744688.
  • Bhujbal SV, Mitra B, Jain U, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505–2536. doi: 10.1016/j.apsb.2021.05.014.
  • Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–872. doi: 10.1248/cpb.9.866.
  • Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25. doi: 10.1016/j.apsb.2013.11.001.
  • Catana C, Gao H, Orrenius C, et al. Linear and nonlinear methods in modeling the aqueous solubility of organic compounds. J Chem Inf Model. 2005;45(1):170–176. doi: 10.1021/ci049797u.
  • Huuskonen J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inf Comput Sci. 2000;40(3):773–777. doi: 10.1021/ci9901338.
  • Tetko IV, Tanchuk VY, Kasheva TN, et al. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inf Comput Sci. 2001;41(6):1488–1493. doi: 10.1021/ci000392t.
  • Gharagheizi F. A new molecular-based model for prediction of enthalpy of sublimation of pure components. Thermochim Acta. 2008;469(1–2):8–11. doi: 10.1016/j.tca.2007.12.005.
  • Faller B, Ertl P. Computational approaches to determine drug solubility. Adv Drug Deliv Rev. 2007;59(7):533–545. doi: 10.1016/j.addr.2007.05.005.
  • Taskinen J, Norinder U. Comprehensive medicinal chemistry II. Vol. 625.Amsterdam: Elsevier; 2007;627
  • Wang J, Hou T. Recent advances on aqueous solubility prediction. Comb Chem High Throughput Screen. 2011;14(5):328–338. doi: 10.2174/138620711795508331.
  • Johnson SR, Zheng W. Recent progress in the computational prediction of aqueous solubility and absorption. Aaps J. 2006;8(1):E27–E40. doi: 10.1208/aapsj080104.
  • Yalkowsky SH, Banerjee S. Aqueous solubility: methods of estimation for organic compounds. New York: Marcel Dekker; 1992; p. 232–254.
  • Youm I, Youan B-BC. Validated reverse-phase high-performance liquid chromatography for quantification of furosemide in tablets and nanoparticles. J Anal Methods Chem. 2013;2013:207028. doi: 10.1155/2013/207028.
  • Meyyanathan SN, Rajan S, Muralidharan S, et al. A validated RP-HPLC method for simultaneous estimation of nebivolol and hydrochlorothiazide in tablets. Indian J Pharm Sci. 2008;70(5):687–689. doi: 10.4103/0250-474X.45420.
  • Sayar E, Sahin S, Cevheroglu S, et al. Development and validation of an HPLC method for simultaneous determination of trimethoprim and sulfamethoxazole in human plasma. Eur J Drug Metab Pharmacokinet. 2010;35(1–2):41–46. doi: 10.1007/s13318-010-0006-9.
  • Manchanda S, Sahoo PK, Majumdar DK. RP-HPLC method development and validation for the estimation of acetazolamide in bulk drug and formulations with forced degradation studies. Pharm Lett. 2016;8:338–347.
  • Gomaa ZS. Determination of acetazolamide in dosage forms by high performance liquid chromatography. Biomed Chromatogr. 1993;7(3):134–135. doi: 10.1002/bmc.1130070305.
  • Alexopoulos EC. Introduction to multivariate regression analysis. Hippokratia. 2010;14(Suppl 1):23–28.
  • Molinspiration property calculator. https://www.molinspiration.com/services/. 2022.
  • Berrar D. Cross-validation. J Encyclopedia BioinformComput Biol. 2019;1:542–545.
  • Pahikkala T, Boberg J, Salakoski T. Fast n-fold cross-validation for regularized least-squares In Proceedings of the ninth Scandinavian conference on artificial intelligence (SCAI 2006). 2006; 83:p. 90.
  • Plevris V, Solorzano G, Bakas NP, et al. Investigation of performance metrics in regression analysis and machine learning-based prediction models. 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022). European Community on Computational Methods in Applied Sciences; 2022;1–25. doi: 10.23967/eccomas.2022.155.
  • Salman A, Nasrul E, Rivai H, et al. Physicochemical characterization of amorphous solid dispersion of ketoprofen–polyvinylpyrrolidone K-30. Int J Pharm Pharm Sci. 2015;7(2):209–212.
  • S’ari M, Blade H, Cosgrove S, et al. Characterization of amorphous solid dispersions and identification of low levels of crystallinity by transmission electron microscopy. Mol Pharm. 2021;18(5):1905–1919. doi: 10.1021/acs.molpharmaceut.0c00918.
  • Thakral S, Terban MW, Thakral NK, et al. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry. Adv Drug Deliv Rev. [Internet]. 2016;100:183–193. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X15300156. doi: 10.1016/j.addr.2015.12.013.
  • Miyazaki T, Yoshioka S, Aso Y, et al. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci. 2004;93(11):2710–2717. doi: 10.1002/jps.20182.
  • Van den Mooter G, Wuyts M, Blaton N, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12(3):261–269. doi: 10.1016/s0928-0987(00)00173-1.
  • Crowley KJ, Zografi G. The effect of low concentrations of molecularly dispersed poly (vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharm Res. 2003;20(9):1417–1422. doi: 10.1023/A:1025706110520.
  • Taylor LS, Langkilde FW, Zografi G. Fourier transform raman spectroscopic study of the interaction of water vapor with amorphous polymers. J Pharm Sci. 2001;90(7):888–901. doi: 10.1002/jps.1041.
  • Yani Y, Kanaujia P, Chow PS, et al. Effect of API-polymer miscibility and interaction on the stabilization of amorphous solid dispersion: a molecular simulation study. Ind Eng Chem Res. 2017;56(44):12698–12707. doi: 10.1021/acs.iecr.7b03187.
  • Kini A, Patel SB. Phase behavior, intermolecular interaction, and solid state characterization of amorphous solid dispersion of febuxostat. Pharm Dev Technol. 2017;22(1):45–57. doi: 10.3109/10837450.2016.1138130.
  • Ryu SR, Noda I, Jung YM. What is the origin of positional fluctuation of spectral features: true frequency shift or relative intensity changes of two overlapped bands? Appl Spectrosc. 2010;64(9):1017–1021. doi: 10.1366/000370210792434396.
  • Löbmann K, Strachan C, Grohganz H, et al. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81(1):159–169. doi: 10.1016/j.ejpb.2012.02.004.
  • Lehmkemper K, Kyeremateng SO, Bartels M, et al. Physical stability of API/polymer-blend amorphous solid dispersions. Eur J Pharm Biopharm. 2018;124:147–157. doi: 10.1016/j.ejpb.2017.12.002.
  • Newman A. Pharmaceutical amorphous solid dispersions. In: Newman A, editor. Pharm ASD. John Wiley & Sons; 2015; p. 85–116.
  • Zografi G, Newman A. Introduction to amorphous solid dispersions. Pharm Sci Encyclopedia. Hoboken, NJ: Wiley; 2015; p. 1–41.
  • Sofroniou C, Baglioni M, Mamusa M, et al. Self-assembly of soluplus in aqueous solutions: characterization and prospectives on perfume encapsulation. ACS Appl Mater Interfaces. 2022;14(12):14791–14804. doi: 10.1021/acsami.2c01087.
  • Alopaeus JF, Hagesæther E, Tho I. Micellisation mechanism and behaviour of soluplus®–furosemide micelles: preformulation studies of an oral nanocarrier-based system. Pharmaceuticals. 2019;12(1):15. doi: 10.3390/ph12010015.
  • Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–129. doi: 10.1016/j.ijpharm.2006.08.010.
  • Prashanth Parupathi, Siddharatha Dhoppalapudi. The role of surfactants in preserving the stability of amorphous solid dispersions: a review. GSC Biol. Pharm. Sci. 2022;21(3):039–047. doi: 10.30574/gscbps.2022.21.3.0454.
  • Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.
  • Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 2004;44(3):1000–1005. doi: 10.1021/ci034243x.
  • Alex A, Millan DS, Perez M, et al. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med Chem Commun. 2011;2(7):669–674. doi: 10.1039/c1md00093d.
  • Jain P, Yalkowsky SH. Prediction of aqueous solubility from SCRATCH. Int J Pharm. 2010;385(1-2):1–5. doi: 10.1016/j.ijpharm.2009.10.003.
  • Venkatram S, Kim C, Chandrasekaran A, et al. Critical assessment of the hildebrand and hansen solubility parameters for polymers. J Chem Inf Model. 2019;59(10):4188–4194. doi: 10.1021/acs.jcim.9b00656.
  • Novo LP, Curvelo AAS. Hansen solubility parameters: a tool for solvent selection for organosolv delignification. Ind Eng Chem Res. 2019;58(31):14520–14527. doi: 10.1021/acs.iecr.9b00875.
  • Veber DF, Johnson SR, Cheng H-Y, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–2623. doi: 10.1021/jm020017n.
  • Baum E. Chemical property estimation: theory and application. Crc Press; 1997. doi: 10.1201/9781315139159.
  • Osborne JW, Waters E. Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research and Evaluation. 2003;8(1):2.
  • Peterson RA. Finding optimal normalizing transformations via bestNormalize. R J. 2021;13(1):294–313.
  • Bollinger G, Belsley DA, Kuh E, et al. Regression diagnostics: identifying influential data and sources of collinearity. JMark Res. 1981;18(3):392–393. doi: 10.2307/3150985.
  • Gregorich M, Strohmaier S, Dunkler D, et al. Regression with highly correlated predictors: variable omission is not the solution. Int J Environ Res Public Health. 2021;18(8):4259. doi: 10.3390/ijerph18084259.
  • Shen J, Burgess DJ. In vitro-in vivo correlation for complex non-oral drug products: where do we stand? J Control Release. 2015;219:644–651. doi: 10.1016/j.jconrel.2015.09.052.
  • Botchkarev A. A new typology design of performance metrics to measure errors in machine learning regression algorithms. IJIKM. 2019;14:045–076. doi: 10.28945/4184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.