72
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced dissolution rates of glibenclamide through solid dispersions on microcrystalline cellulose and mannitol, combined with phosphatidylcholine

&
Pages 297-305 | Received 07 Dec 2023, Accepted 15 Feb 2024, Published online: 27 Feb 2024

References

  • Hecq J, Deleers M, Fanara D, et al. Preparation and invitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble week base. Eur J Pharm Biopharm. 2006;64(3):360–368. doi:10.1016/j.ejpb.2006.05.008.
  • Vigh T, Démuth B, Galata DL, et al. Oral bioavailability enhancement of flubendazole by developing nanofibrous solid dosage forms. Drug Dev Ind Pharm. 2017;43(7):1126–1133. doi:10.1080/03639045.2017.1298121.
  • Kovalevska I, Ruban O, Kutova O, et al. Optimization of the composition of solid dispersion of quercetin. Curr Issues Pharm Med Sci. 2021;34(1):1–4. doi:10.2478/cipms-2021-0001.
  • Chu KR, Lee E, Jeong SH, et al. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 2012;35(7):1187–1195. doi:10.1007/s12272-012-0709-3.
  • Zha J, Zhang Q, Li M, et al. Improving dissolution properties by polymers and surfactants: a case study of celatrol. J Pharm Sci. 2018;107(11):2860–2868. doi:10.1016/j.xphs.2018.07.008.
  • Alhagiesa AW, Ghareeb MM. Formulation and evaluation of nimodipine nanoparticles incorporated within orodispersible tablets. Int J Drug Deliv Technol. 2020;10:547–552.
  • Hassan MM, Mohammed AFA, Elamin KM, et al. Improvement of pharmaceutical properties of zerumbone, a multiple functional compound using cyclodextrin derivatives. Chem Pharm Bull (Tokyo). 2020;68(11):1117–1120. doi:10.1248/cpb.c20-00621.
  • Zhou Q, Tan Z, Yang D, et al. Improving the solubility of aripiprazole by multicomponent crystallization. Crystals. 2021;11(4):343. doi:10.3390/cryst11040343.
  • Jadav NB, Paradkar A. Solid dispersions: technologies used and future outlook, technologies used and future outlook. Nanopharm. 2020;1:91–120.
  • Chen X, Partheniadis I, Nikolakakis I, et al. Solubility improvement of progesterone from solid dispersions prepared by solvent evaporation and co-milling. Polymers (Basel). 2020;12(4):854. doi:10.3390/polym12040854.
  • Antosik-Rogóż A, Szafraniec-Szczęsny J, Gawlak K, et al. Tabletting solid dispersions of bicalutamide prepared using ball-milling or supercritical carbon dioxide: the interrelationship between phase transition and in-vitro dissolution. Pharm Dev Technol. 2020;25(9):1109–1117. doi:10.1080/10837450.2020.1797787.
  • Venkateskumar SSK, Verma PRP. Physicochemical characterization and in vitro dissolution behavior of olanzapine-mannitol solid dispersions. Braz J Pharm Sci. 2012;48:243–255.
  • Bhardwaj V, Trasi N, Zemlyanov DY, et al. Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersion prepared by spray-drying and hot melting extrusion. Int J Pharm. 2018;540(1–2):106–119. doi:10.1016/j.ijpharm.2018.02.005.
  • Bhujbal SV, Pathak V, Zemlyanov DY, et al. Physical stability and dissolution of lumefantrine amorphous solid dispersion produced by spray anti-solvent precipitation. J Pharm Sci. 2021;110(6):2423–2431. doi:10.1016/j.xphs.2020.12.033.
  • Chopra DK, Kar DM, Sahu PK. Lipid based solid dispersions of olmesartan medoxomil with oral bio availability: in vitro and ex vivo evaluation. Res J Pharm Technol. 2020;13(5):2096–2100. doi:10.5958/0974-360X.2020.00377.7.
  • Todorović N, Čanji Panić J, Pavlić B, et al. Supercritical fluid technology as a strategy for nifedipine solid dispersions formulation: in vitro and in vivo evaluation. Int J Pharm. 2024;649:123634. doi:10.1016/j.ijpharm.2023.123634.
  • Sherif AY, Shahba AAW. Development of a multifunctional oral dosage form via integration of solid dispersion technology with a black seed Oil-Based Self-Nanoemulsifying drug delivery system. Biomedicines. 2023;11(10):2733. doi:10.3390/biomedicines11102733.
  • Aldosari BN, Almurshedi AS, Alfagih IM, et al. Formulation of gelucire®-based solid dispersions of atorvastatin calcium: in vitro dissolution and in vivo bioavailability study. AAPS PharmSciTech. 2022;23(7):278. doi:10.1208/s12249-022-02429-z.
  • Elkanayati RM, Omari S, Youssef AAA, et al. Multilevel categoric factorial design for optimization of raloxifene hydrochloride solid dispersion in PVP K30 by hot-melt extrusion technology. J Drug Deliv Sci Technol. 2024;92:105362. doi:10.1016/j.jddst.2024.105362.
  • Hermeling M, Nueboldt C, Heumann R, et al. Nano-Dry-Melting: a novel technology for manufacturing of pharmaceutical amorphous solid dispersions. Pharmaceutics. 2022;14(10):2145. doi:10.3390/pharmaceutics14102145.
  • Zeng S, Zhu H, Liu Z, et al. Poly(vinyl alcohol)/kaolin barrier films with superior dispersion fabricated by solid-state shear milling and biaxial stretching. Ind Eng Chem Res. 2022;61(28):10106–10116. doi:10.1021/acs.iecr.2c01305.
  • Paul S, Asha KF, Alam IZ, et al. Physicochemical reports of gliclazide-carplex solid dispersions and tablets prepared with directly compressible co-processed excipients. Heliyon. 2023;9(12):e22899. doi:10.1016/j.heliyon.2023.e22899.
  • Fang Y, Niu H, Guo Y, et al. Preparation, optimization and bioavailability studies of the bergenin solid dispersion pellets. J Drug Deliv Sci Technol. 2022;73:103379. doi:10.1016/j.jddst.2022.103379.
  • Liu Y, Zhang Y, Yan Q, et al. Evaluation of microstructure, dissolution rate, and oral bioavailability of paclitaxel poloxamer 188 solid dispersion. Drug Deliv Transl Res. 2024;14(2):329–341. doi:10.1007/s13346-023-01400-0.
  • Schönfeld BV, Westedt U, Wagner KG. Compression of amorphous solid dispersions prepared by hot-melt extrusion, spray drying and vacuum drum drying. Int J Pharm X. 2021;3:100102. doi:10.1016/j.ijpx.2021.100102.
  • Hoseini Aghdam S, Allahyari S. Enhancing the dissolution of flutamide through supersaturation using beta-cyclodextrin: a promising approach for improved solubility of poorly water-soluble drugs. J Pharm Innov. 2023;18(4):2294–2304. doi:10.1007/s12247-023-09793-8.
  • Takano R, Maurer R, Jacob L, et al. Formulating amorphous solid dispersions: impact of inorganic salts on drug release from tableting containing itraconazole-HPMC extrudate. Mol Pharm. 2020;17(8):2768–2778. doi:10.1021/acs.molpharmaceut.9b01109.
  • Chaturvedi M, Kumar M, Pathak K, et al. Surface solid dispersion and solid dispersion of meloxicam: comparison and product development. Adv Pharm Bull. 2017;7(4):569–577. doi:10.15171/apb.2017.068.
  • Chaudhary S, Nair AB, Shah J, et al. Enhanced solubility and bioavailability of dolutegravir by solid dispersion method: in vitro and in vivo evaluation- a potential approach for HIV therapy. AAPS PharmSciTech. 2021;22(3):127. doi:10.1208/s12249-021-01995-y.
  • Zolotov SA, Demina NB, Zolotova AS, et al. Development of novel darunavir amorphous solid dispersions with mesoporous carriers. Eur J Pharm Sci. 2021;159:105700. doi:10.1016/j.ejps.2021.105700.
  • Maclean N, Walsh E, Soundaranathan M, et al. Exploring the performance-controlling tablet disintegration mechanisms for direct compression formulations. Int J Pharm. 2021;599:120221. doi:10.1016/j.ijpharm.2021.120221.
  • Krstić M, Manić L, Martić N, et al. Binary polymeric amorphous carvedilol solid dispersions: in vitro and in vivo characterization. Eur J Pharm Sci. 2020;150:105343. doi:10.1016/j.ejps.2020.105343.
  • Azman SEN, Abd Razak FS, Kamal WHBW, et al. Investigation of filler effects on the compounding of freeze-dried orodispersible tablets containing Annona muricata extract. Int J Pharm Compd. 2020;24:509–514.
  • Dahima R, Gangwai S. A comparative study of solubility enhancement of enalapril using formulation of solid dispersion and using hydrotropic solubilization technique. Res J Pharm Biol Chem Sci. 2013;4:1301–1305.
  • Chemical Book. Microcrystalline cellulose. 2024. [online]. [accessed January 4, 2024]. Available from: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4217972.htm
  • Nation Library of Medicine. PubChem. Mannitol. 2024. [accessed January 4, 2024]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Mannitol#section=Solubility
  • Zhang Y, Gao Y, Du X, et al. Combining co-amorphous-based spray drying with inert carrier to achieve improved bioavailability and excellent downstream manufacturability. Pharmaceutics. 2020;12(11):1063. doi:10.3390/pharmaceutics12111063.
  • Ekdahl A, Mudie D, Malewski D, et al. Effect of spray-dried particle morphology on the mechanical and flow properties of felodipine in PVP VA amorphous solid dispersions. J Pharm Sci. 2019;108(11):3657–3666. doi:10.1016/j.xphs.2019.08.008.
  • Al-Zoubi N, Gharaibeh S, Aljaberi A, et al. Spray drying for direct compression of pharmaceuticals. Processes. 2021;9(2):267. doi:10.3390/pr9020267.
  • Wang B, Liu F, Xiang J, et al. A critical review of spray-dried amorphous pharmaceuticals: synthesis, analysis and application. Int J Pharm. 2021;594:120165. doi:10.1016/j.ijpharm.2020.120165.
  • Torrado-Salmerón C, Guarnizo-Herrero V, Gallego-Arranz T, et al. Improvement in the oral bioavailability and efficacy of new ezetimibe formulations-Comparative study of a solid dispersion and different micellar systems. Pharmaceutics. 2020;12(7):617. doi:10.3390/pharmaceutics12070617.
  • Thakur PS, Thakore SD, Bansal AK. Role of surface characteristics of mannitol in crystallinity of fenofibrate during spray drying. J Pharm Sci. 2020;109(2):1105–1114. doi:10.1016/j.xphs.2019.10.067.
  • Nandwani Y, Kaur A, Bansal AK. Generation of ophthalmic nanosuspension of prednisolone acetate using a novel technology. Pharm Res. 2021;38(2):319–333. doi:10.1007/s11095-021-02985-2.
  • Shah S, Bodhe R, Gorle A. Formulation development of porous mannitol carrier: improving the dissolution of poorly soluble drugs. J. Drug Delivery Ther. 2019;9(6):143–154. doi:10.22270/jddt.v9i6.3719.
  • Mortazavi SA, Jafariazar Z, Ghadjahani Y. Formulation and in-vitro characterization of sustained release matrix type ocular timolol maleate mini-tablet. Iran J Pharm Res. 2014;13:19–27.
  • Basalious EB, Abdullah A, Ibrahim M. Utility of mannitol and citric acid for enhancing the solubilizing and taste masking properties of β-cyclodextrin: development of fast-dissolving tablets containing extremely bitter drug. J Pharm Innov. 2014;9(4):309–320. doi:10.1007/s12247-014-9196-z.
  • Wang Z, Li Q, Zhao X, et al. Preparation, formula optimization and antitumor actions of mannitol coupling camptothecin nanoparticles. Int J Pharm. 2014;465(1–2):360–367. doi:10.1016/j.ijpharm.2014.02.019.
  • Kulthe VV, Chaudhari PD, Aboul-Enein HY. Freeze-dried amorphous dispersions for solubility enhancement of thermosensitive API having low molecular lipophilicity. Drug Res (Stuttg). 2014;64(9):493–498. doi:10.1055/s-0033-1363249.
  • Jung JJ, Kim JW, Kim PY, et al. Elution behavior of nizatidine immediate release tablet according to lactose and microcrystalline cellulose content. Polym Korea. 2020;44(4):566–571. doi:10.7317/pk.2020.44.4.566.
  • Lopalco A, Iacobazzi RM, Denora N, et al. Bortezomib aqueous solubility in the presence and absence of D-mannitol: a clarification with formulation implications. J Pharm Sci. 2021;110(1):543–547. doi:10.1016/j.xphs.2020.10.012.
  • Liu C, Desai KGH, Liu C. Solubility of rofecoxib in the presence of mannitol, poly(vinylpyrrolidone) K30, urea, polyethylene glycol 4000 and polyethylene glycol 6000 at (298.15, 303.15, and 308.15) K. J Chem Eng Data. 2005;50(2):661–665. doi:10.1021/je049631p.
  • Iqbal A, Hossain S, Shamim A, et al. Formulation, in vitro evaluation and characterization of atorvastatin solid dispersion. Trop J Pharm Res. 2020;19(6):1131–1138. doi:10.4314/tjpr.v19i6.2.
  • Ghanbarzadeh S, Khalili A, Jouyban A, et al. Drammatic improvement in dissolution rate of albendazole by a simple, one-step, industrially scalable technique. Res Pharm Sci. 2016;11(6):435–444. doi:10.4103/1735-5362.194868.
  • Wang D, Li H, Gu J, et al. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions. J Pharm Biomed Anal. 2013;83:141–148. doi:10.1016/j.jpba.2013.05.001.
  • Fung MH, Suryanarayanan R. Effect of organic acids on molecular mobility, physical stability, and dissolution of ternary ketoconazole spray-dried dispersions. Mol Pharm. 2019;16(1):41–48. doi:10.1021/acs.molpharmaceut.8b00593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.