39
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

BSA nanoclusters-based sensor for detection of dopamine in schizophrenia from biofluids

&
Pages 341-353 | Received 19 Sep 2023, Accepted 05 Mar 2024, Published online: 21 Mar 2024

References

  • Thirumalraj B, Palanisamy S, Chen SM, et al. Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples. J Colloid Interface Sci. 2016;462:375–381. doi: 10.1016/j.jcis.2015.10.009.
  • Sharel PE, Miller TS, Macpherson JV, et al. Controlled functionalisation of single-walled carbon nanotube network electrodes for the enhanced voltammetric detection of dopamine. Phys Chem Chem Phys. 2015;17(39):26394–26402. doi: 10.1039/c5cp04905a.
  • Silva TR, Vieira IC. A biosensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst. 2016;141(1):216–224. doi: 10.1039/c5an01784j.
  • Oak JN, Oldenhof J, Van Tol HHM. The dopamine D receptor: one decade of research. Eur J Pharmacol. 2000;405(1–3):303–327. doi: 10.1016/s0014-2999(00)00562-8.
  • Adekunle AS, Agboola BO, Pillay J, et al. Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sens Actuators B Chem. 2010;148(1):93–102. doi: 10.1016/j.snb.2010.03.088.
  • Banu A. Biosynthesis of monodispersed silver nanoparticles and their activity against Mycobacterium tuberculosis. J Nanomed Biother Discov. 2013;3:1.
  • Lu YZ, Wei WT, Chen W. Copper nanoclusters: synthesis, characterization and properties. Chin Sci Bull. 2012;57(1):41–47. doi: 10.1007/s11434-011-4896-y.
  • Yang AC, Tsai SJ. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 2017;18(8):1689. doi: 10.3390/ijms18081689.
  • Zhao M, Sun L, Crooks RM. Advanced inorganic chemistry. In: Lever ABP, editor. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1993.
  • Poggi M, Barroso R, José Costa-Filho A, et al. New isoniazid complexes, promising agents against Mycobacterium tuberculosis. J Mex Chem Soc. 2013;57(3):198–204.
  • Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [18F/11C]-DOPA PET studies. Schizophr Bull. 2013;39(1):33–42. doi: 10.1093/schbul/sbr180.
  • Balogh L, Tomalia DA. Polymer. Angew Chem Int Ed Engl. 1998;120:7355–7356.
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–599. doi: 10.1046/j.1365-2125.2003.01892.x.
  • Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62. doi: 10.1007/s13346-012-0108-9.
  • Clemens DL, Lee BY, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–2545. doi: 10.1128/AAC.06049-11.
  • Wang Z, Chen B, Rogach AL. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz. 2017;2(3):135–146. doi: 10.1039/c7nh00013h.
  • Wang C, Wang C, Xu L, et al. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale. 2014;6(3):1775–1781. doi: 10.1039/c3nr04835g.
  • Shende P, Rodrigues B, Govardhane S. Diversified applications of self-assembled nanocluster delivery systems—a state-of-the-art review. Curr Pharm Des. 2022;28(23):1870–1884. doi: 10.2174/1381612828666220301125944.
  • Hwang AA, Lee BY, Clemens DL, et al. pH-responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in mice. Small. 2015;11(38):5066–5078. doi: 10.1002/smll.201500937.
  • Yarramala DS, Baksi A, Pradeep T, et al. Green synthesis of protein-protected fluorescent gold nanoclusters (AuNCs): reducing the size of AuNCs by partially occupying the Ca2+ site by La3+ in apo-α-lactalbumin. ACS Sustain Chem Eng. 2017;5(7):6064–6069. doi: 10.1021/acssuschemeng.7b00958.
  • Patil TS, Deshpande AS, Deshpande S, et al. Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: current status and futuristic need. J Drug Target. 2019;27(1):12–27. doi: 10.1080/1061186X.2018.1455842.
  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi: 10.1186/1556-276X-9-247.
  • Desai D, Shende P. Experimental aspects of NPY‐decorated gold nanoclusters using randomized hybrid design against breast cancer cell line. Biotechnol J. 2021;16(12):2100319.
  • Rastogi L, Arunachalam J. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Colloids Surf B Biointerfaces. 2013;108:134–141. doi: 10.1016/j.colsurfb.2013.02.031.
  • Rodrigues B, Shende P. Monodispersed metal-based dendrimeric nanoclusters for potentiation of anti-tuberculosis action. J Mol Liq. 2020;304:112731.
  • Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981–5079.
  • Bui TH, Thangavel B, Sharipov M, et al. Smartphone-based portable bio-chemical sensors: exploring recent advancements. Chemosensors. 2023;11(9):468. doi: 10.3390/chemosensors11090468.
  • Schirinzi T, Cordella A, Mercuri NB, et al. Design of an innovative methodology for cerebrospinal fluid analysis: preliminary results. Sensors. 2021;21(11):3767. doi: 10.3390/s21113767.
  • Wang L, Alachkar A, Sanathara N, et al. A methionine-induced animal model of schizophrenia: face and predictive validity. Int J Neuropsychopharmacol. 2015;18(12):pyv054. doi: 10.1093/ijnp/pyv054.
  • González-González O, Ramirez IO, Ramirez BI, et al. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics. 2022;14(11):2324. doi: 10.3390/pharmaceutics14112324.
  • Brisch R, Saniotis A, Wolf R, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry. 2014;5:47. doi: 10.3389/fpsyt.2014.00047.
  • Luvsannyam E, Jain MS, Pormento MKL, et al. Neurobiology of schizophrenia: a comprehensive review. Cureus. 2022;14(4):e23959. doi: 10.7759/cureus.23959.
  • Huang X, Li Z, Yu Z, et al. Recent advances in the synthesis, properties, and biological applications of platinum nanoclusters. J Nanomater. 2019;2019:1–31. doi: 10.1155/2019/6248725.
  • Krstić M, Medarević Đ, Đuriš J, et al. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In: Lipid nanocarriers for drug targeting. Bucharest, Romania: Elsevier; 2018. p. 473–508.
  • Murdock RC, Braydich-Stolle L, Schrand AM, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101(2):239–253. doi: 10.1093/toxsci/kfm240.
  • Chatterjee M, Nath P, Kadian S, et al. Highly sensitive and selective detection of dopamine with boron and sulfur co-doped graphene quantum dots. Sci Rep. 2022;12(1):9061. doi: 10.1038/s41598-022-13016-4.
  • Ilani T, Ben-Shachar D, Strous RD, et al. A peripheral marker for schizophrenia: increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci U S A. 2001;98(2):625–628.
  • Guo Y, Chen M, Yang T, et al. Ratio-metric fluorescence/colorimetric and smartphone-assisted visualization for the detection of dopamine based on Cu-MOF with catecholase-like activity. Chemosensors. 2023;11(8):431. doi: 10.3390/chemosensors11080431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.