231
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Silicon and arbuscular mycorrhizal species complement in improving soil characteristics, sulfur metabolism and antioxidant defense responses in arsenic stressed Cajanus cajan (L.) Millsp

, &
Pages 2814-2832 | Received 09 Apr 2022, Accepted 29 Jan 2023, Published online: 19 Feb 2023

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Hussain M. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health. 15(1):59.
  • Aebi H. 1984. [13] Catalase in vitro. In: Hicks LM, editor. Methods in enzymology. United State: Academic press; p. 121–126. doi:10.1016/S0076-6879(84)05016-3.
  • Ahmad P, Alam P, Balawi TH, Altalayan FH, Ahanger MA, Ashraf M. 2020. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemosphere. 244:125480.
  • Ahmad A, Khan WU, Shah AA, Yasin NA, Naz S, Ali A, Tahir A, Batool AI. 2021. Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere. 262:128384.
  • Alaraidh IA, Alsahli AA, Razik EA. 2018. Alteration of antioxidant gene expression in response to heavy metal stress in Trigonella foenum-graecum L. S Afr J Bot. 115:90–93.
  • Al-Khaliel AS. 2010. Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil Environ. 56(7):318–324.
  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C. 1981. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline. Agric Biol Chem. 45(5):1289–1290.
  • Asada K. 1984. [56] Chloroplasts: Formation of active oxygen and its scavengingIn: Hicks LM, editor. Methods in enzymology. Academic press; p. 422–429.
  • Axelrod B, Cheesbrough TM, Laakso S. 1981. [53] Lipoxygenase from soybeans: EC 1.13. 11.12 Linoleate: oxygen oxidoreductase. In: Hicks LM, editor. Methods in enzymology. United States: Academic press; p. 441–451.
  • Bano SA, Ashfaq D. 2013. Role of mycorrhiza to reduce heavy metal stress. Nat Sci. 5(12):1–5.
  • Bhalla S, Garg N. 2021. Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp. Mycorrhiza. 31(6):735–754.
  • Bhargava P, Srivastava AK, Urmil S, Rai LC. 2005. Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol. 162(11):1220–1225.
  • Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R. 2019. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants. 8(3):71.
  • Bisht A, Bhalla S, Kumar A, Kaur J, Garg N. 2021. Gene expression analysis for selection and validation of suitable housekeeping gene (s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. Plant Physiol Biochem. 162:592–602.
  • Bisht A, Garg N. 2022a. AMF modulated rhizospheric microbial enzyme activities and their impact on sulphur assimilation along with thiol metabolism in pigeonpea under Cd stress. Rhizosphere. 21:100478.
  • Bisht A, Garg N. 2022b. AMF species improve yielding potential of Cd stressed pigeonpea plants by modulating sucrose-starch metabolism, nutrients acquisition and soil microbial enzymatic activities. Plant Growth Regul. 96:409–430.
  • Brackhage C, Huang JH, Schaller J, Elzinga EJ, Dudel EG. 2014. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci Rep. 4(1):1–7.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254.
  • Castillo FJ, Greppin H. 1988. Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot. 28(3):231–238.
  • Castillo FJ, Penel C, Greppin H. 1984. Peroxidase release induced by ozone in Sedum album leaves: involvement of Ca2+. Plant Physiol. 74(4):846–851.
  • Del Longo OT, González CA, Pastori GM, Trippi VS. 1993. Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol. 34(7):1023–1028.
  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR. 2013. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol. 83(4):303–315.
  • Dhindsa RS, Pamela P-D, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1):93–101.
  • Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol. 23(3):345–357.
  • Duan C, Fang L, Yang C, Chen W, Cui Y, Li S. 2018. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol Environ Saf. 156:106–115.
  • FAOSTAT. 2019. http://www.fao.org/faostat/en/#data/QC
  • Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, He S, Zhou W. 2016. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci. 7:468.
  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ. 2003. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol. 133(4):1935–1946.
  • Frew A, Powell JR, Allsopp PG, Sallam N, Johnson SN. 2017. Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil. 419(1):423–433.
  • Gao WQ, Wang P, Wu QS. 2019. Functions and application of glomalin-related soil proteins: a review. Sains Malays. 48(1):111–119.
  • Garg N, Bhandari P. 2016. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul. 78(3):371–387.
  • Garg N, Cheema A 2021. Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under as stress. Ecotoxicol Environ Saf. 207:111196.
  • Garg N, Singh S. 2018. Mycorrhizal inoculations and silicon fortifications improve rhizobial symbiosis, antioxidant defense, trehalose turnover in pigeon pea genotypes under cadmium and zinc stress. Plant Growth Regul. 86(1):105–119.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84:489–500.
  • González-Guerrero M, Oger E, Benabdellah K, Azcón-Aguilar C, Lanfranco L, Ferrol N. 2010. Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr Genet. 56(3):265–274.
  • Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S. 2016. Silicate reduces cadmium uptake into cells of wheat. Environ Pollut. 211:90–97.
  • Gupta S, Thokchom SD, Kapoor R. 2021. Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Front Plant Sci. 12:640379.
  • Hajiboland R, Moradtalab N, Aliasgharzad N, Eshaghi Z, Feizy J. 2018. Silicon influences growth and mycorrhizal responsiveness in strawberry plants. Physiol Mol Biol Plants. 24(6):1103–1115.
  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H. 2011. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza. 21(2):117–129.
  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S. 2016. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci. 23(2):272–281.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: i. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198.
  • Jung HI, Lee J, Chae MJ, Kong MS, Lee CH, Kang SS, Kim YH. 2017. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Environ Moni Assess. 189(12):638.
  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P. 2020. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater. 399:123020.
  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD. 2015. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta. 241(4):847–860.
  • Khandekar S, Leisner S. 2011. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol. 168(7):699–705.
  • Khan E, Gupta M. 2018. Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep. 8(1):1–16.
  • Lappartient AG, Touraine B. 1996. Demand-driven control of root ATP sulfurylase activity and SO42-uptake in intact canola (the role of phloem-translocated glutathione). Plant Physiol. 111(1):147–157.
  • Li H, Chen XW, Wong MH. 2016. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere. 145:224–230.
  • Lyubun YV, Pleshakova EV, Mkandawire M, Turkovskaya OV. 2013. Diverse effects of arsenic on selected enzyme activities in soil–plant–microbe interactions. J Hazard Mater. 262:685–690.
  • Maghsoudi K, Arvin MJ, Ashraf M. 2020. Mitigation of arsenic toxicity in wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. J Soil Sci Plant Nutr. 20(2):577–588.
  • Mandlik R, Singla P, Kumawat S, Khatri P, Ansari W, Singh A, Sharma Y, Singh A, Solanke A, Nadaf A, et al. 2022. Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan). Environ Pollut. 294:118606.
  • Marguí E, Hidalgo M, Queralt Mitjans I. 2007. XRF spectrometry for trace element analysis of vegetation samples.
  • Masindi V, Muedi KL. 2018. Environmental contamination by heavy metals. Heavy Met. 10:115–132.
  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T. 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul. 35(1):1–10.
  • Ma JF, Yamaji N. 2015. A cooperative system of silicon transport in plants. Trends Plant Sci. 20(7):435–442.
  • Meharg C, Meharg AA. 2015. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot. 120:8–17.
  • Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H. 2015. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza. 25(7):533–546.
  • Mitani N, Yamaji N, Ma JF. 2009. Identification of maize silicon influx transporters. Plant Cell Physiol. 50(1):5–12.
  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR. 2012. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol. 79(1):35–46.
  • Nagalakshmi N, Prasad MNV. 2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 160(2):291–299.
  • Nakagawara S, Sagisaka S. 1984. Increase in enzyme activities related to ascorbate metabolism during cold acclimation in poplar twigs. Plant Cell Physiol. 25(6):899–906.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5):867–880.
  • Oye Anda CC, Opfergelt S, Declerck S. 2016. Silicon acquisition by bananas (cV Grande Naine) is increased in presence of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Plant Soil. 409(1):77–85.
  • Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M. 2016. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem. 104:216–225.
  • Pasbani B, Salimi A, Aliasgharzad N, Hajiboland R. 2020. Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants. Sci Hortic. 272:109575.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc. 55(1):158–IN18.
  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, Cunzo FD, Michelozzi M, Lambardi M, et al. 2018. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 247(3):573–585.
  • Ruscitti M, Arango M, Beltrano J. 2017. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor Exp Plant Physiol. 29(1):37–49.
  • Sharma S, Anand G, Singh N, Kapoor R. 2017. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front Plant Sci. 8:906–926.
  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG. 2000. Symbiotic solution to arsenic contamination. Nature. 404(6781):951–952.
  • Shi G, Cai Q, Liu C, Wu L. 2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul. 61(1):45–52.
  • Sil P, Biswas AK. 2020. Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings. Environ Sci Pollut Res. 27(36):45209–45224.
  • Silva AJD, Nascimento CW, ADS GN, Silva Junior EA. 2015. Effects of silicon on alleviating arsenic toxicity in maize plants. Rev Bras Ciênc Solo. 39:289–296.
  • Smith IK, Vierheller TL, Thorne CA. 1988. Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem. 175(2):408–413.
  • Spagnoletti F, Carmona M, NET G, Chiocchio V, Lavado RS. 2017. Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Appl Soil Ecol. 121:41–47.
  • Spagnoletti F, Lavado RS. 2015. The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy. 5(2):188–199.
  • Stazi SR, Moscatelli MC, Papp R, Crognale S, Grego S, Martin M, Marabottini R. 2017. A multi-biological assay approach to assess microbial diversity in arsenic (as) contaminated soils. Geomicrobiol J. 34(2):183–192.
  • Struyf E, Smis A, Van Damme S, Garnier J, Govers G, Van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, et al. 2010. Historical land use change has lowered terrestrial silica mobilization. Nat Commun. 1(1):1–7.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1(4):301–307.
  • Tang T, Miller DM. 1991. Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel, and arsenic. Commun Soil Sci Plant Anal. 22(19–20):2037–2045.
  • Thakur S, Choudhary S, Majeed A, Singh A, Bhardwaj P. 2020. Insights into the molecular mechanism of arsenic phytoremediation. J Plant Growth Regul. 39(2):532–543.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151(1):59–66.
  • Wiedenhoeft AC. 2006. Plant nutrition. New York: Infobase Publishing.
  • Wright SF, Upadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 198(1):97–107.
  • Yamaji N, Chiba Y, Mitani N, Ma JF. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160:1491–1497.
  • Yamaji N, Mitatni N, Ma JF. 2008. A transporter regulating silicon distribution in rice shoots. Plant Cell. 20(5):1381–1389.
  • Zhang Q, Gong M, Liu K, Chen Y, Yuan J, Chang Q. 2020b. Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Front Microbiol. 11:1428.
  • Zhang J, He Y, Fang Y, Zhao K, Wang N, Zhou Y, Luo L, Yang Y. 2021. Characteristics and influencing factors of microbial community in heavy metal contaminated soil under silicon fertilizer and biochar remediation. Adsorp Sci Technol. 2021. 1–10.
  • Zhang G, Liu X, Gao M, Song Z. 2020a. Effect of Fe–Mn–Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils. Chemosphere. 250:126249.
  • Zhao FJ, Wang P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil. 446(1):1–21.
  • Zhou H, Liu G, Zhang L, Zhou C. 2021. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. J Hazard Mater. 401:1–12.
  • Zwiazek JJ, Blake TJ. 1991. Early detection of membrane injury in black spruce (Picea mariana). Can J For Res. 21(3):401–404.
  • Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K. 2019. Sources of soil pollution by heavy metals and their accumulation in vegetables: a review. Water Air Soil Pollut. 230(7):1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.