100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of soil nitrogen and nitrogen cycling microbial communities in different alfalfa planting years

, , &
Pages 3087-3101 | Received 13 Oct 2022, Accepted 13 Apr 2023, Published online: 24 Apr 2023

References

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. 2017. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 258:122–136. doi:10.1016/j.plantsci.2017.01.018.
  • Ashrafi E, Zahedi M, Razmjoo J. 2014. Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Sci Plant Nutr. 60(5):619–629. doi:10.1080/00380768.2014.936037.
  • Awasthi MK, Li J, Kumar S, Awasthi SK, Wang Q, Chen H, Wang M, Ren X, Zhang Z. 2017. Effects of biochar amendment on bacterial and fungal diversity for cocomposting of gelatin industry sludge mixed with organic fraction of municipal solid waste. Bioresour Technol. 246:214–223. doi:10.1016/j.biortech.2017.07.068.
  • Bao SD. 2008. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press.
  • Chen J, Wang C, Shen ZJ, Gao GF, Zheng HL. 2017. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments. Sci Total Environ. 575:390–399. doi:10.1016/j.scitotenv.2016.10.040.
  • Che RX, Qin JL, Tahmasbian I, Wang F, Zhou ST, Xu ZH, Cui XY. 2018. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes. Soil Biol Biochem. 120:145–152. doi:10.1016/j.soilbio.2018.02.006.
  • Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG. 2009. Molecular detection and quantification of nifH gene sequences in the rhizosphere of Sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol. 42(1):48–53. doi:10.1016/j.apsoil.2009.01.010.
  • Deng L, Wang GL, Liu GB, Shangguan ZP. 2016. Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China. Ecol Eng. 90:105–112. doi:10.1016/j.ecoleng.2016.01.086.
  • Fan KK, Delgado-Baquerizo M, Guo XS, Guo XS, Wang DZ, Wu YY, Zhu M, Yu W, Yao HY, Zhu YG, et al. 2019. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 7(1):143. doi:10.1186/s40168-019-0757-8.
  • Fan J, Shao MA, Wang Q, Jones SB, Reichardt K, Cheng XR, Fu XL. 2010. Toward sustainable soil and water resources use in China’s highly erodible semi-arid loess plateau. Geoderma. 155(1–2):93–100. doi:10.1016/j.geoderma.2009.11.027.
  • Fuhrman JA, Mccallum K, Davis AA. 1992. Novel major archaebacterial group from marine plankton. Nature. 356(6365):148–149. doi:10.1038/356148a0.
  • Fu BZ, Li ZG, Gao XQ, Wu LG, Lan J, Peng WD. 2021. Effects of subsurface drip irrigation on alfalfa (Medicago sativa L.) growth and soil microbial community structures in arid and semi-arid areas of northern China. Appl Soil Ecol. 159:103859. doi:10.1016/j.apsoil.2020.103859.
  • Gaby JC, Buckley DH. 2014. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database. 2014(0):bau001. doi:10.1093/database/bau001.
  • Grzyb A, Wolna-Maruwka A, Niewiadomska A. 2021. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy. 11(7):11071415. doi:10.3390/agronomy11071415.
  • Heichel GH, Barnes DK, Vance CP. 1981. Nitrogen-fixation of alfalfa in the seeding year. Crop Sci. 21:330–335. doi:10.2135/cropsci1981.0011183X002100020032x.
  • He SS, Li YW, Mu HB, Zhao ZR, Wang JW, Liu SF, Sun ZL, Zheng MS. 2021. Ammonium concentration determines differential growth of comammox and canonical ammonia-oxidizing prokaryotes in soil microcosms. Appl Soil Ecol. 157:103776. doi:10.1016/j.apsoil.2020.103776.
  • He H, Miao YJ, Zhang Q, Chen Y, Gan YD, Liu N, Dong LF, Dai JL, Chen WF. 2020. The structure and diversity of nitrogen functional groups from different cropping systems in Yellow River Delta. Microorganisms. 8(3):8030424. doi:10.3390/microorganisms8030424.
  • Hu HW, Zhang LM, Dai Y, Di HJ, He JZ. 2013. Ph-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments. 13(8):1439–1449. doi:10.1007/s11368-013-0726-y.
  • Jia X, Dini-Andreote F, Falcao SJ. 2018. Community assembly processes of the microbial rare biosphere. Trends Microbiol. 26(9):738–747. doi:10.1016/j.tim.2018.02.011.
  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-Like bacteria as dominant populations. Appl Environ Microbiol. 64(8):3042–3051. doi:10.1128/AEM.64.8.3042-3051.1998.
  • Ke XB, Angel R, Lu YH, Conrad R. 2013. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol. 15(8):2275–2292. doi:10.1111/1462-2920.12098.
  • Kemp PF, Aller JY. 2004. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol. 47(2):161–177. doi:10.1016/S0168-6496(03)00257-5.
  • Könneke M, Bernhard AE, de la Torre JRS, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 437(7058):543–546. doi:10.1038/nature03911.
  • Kowalchuk GA, Stephen JR, De Boer W, Embley TM, Woldendorp JW. 1997. Analysis of ammonia oxidizing bacteria of the β-subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol. 63:1489–1497. doi:10.1128/aem.63.4.1489-1497.1997.
  • Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem. 75:11–25. doi:10.1016/j.soilbio.2014.03.021.
  • Levy-Booth DJ, Winder RS. 2010. Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut Douglas-fir stands by using real-time PCR. Appl Environ Microbiol. 76(21):7116–7125. doi:10.1128/AEM.02188-09.
  • Li M, Cao HL, Hong YG, Gu JD. 2011. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol. 89(4):1243–1254. doi:10.1007/s00253-010-2929-0.
  • Li SZ, Deng Y, Du XF, Feng K, Wu YN, He Q, Wang ZJ, Liu YY, Wang DR, Peng X, et al. 2021. Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats. Sci Total Environ. 767:144966. doi:10.1016/j.scitotenv.2021.144966.
  • Li SN, Ji XH, Chao C, Liu ZB, Zhu J, Peng H. 2021. Effects of increasing lime application rates on microbial diversity and community structure in paddy soils. Appl Soil Ecol. 161:103837. doi:10.1016/j.apsoil.2020.103837.
  • Liu XH, Hao MD. 2001. Effects of long-term plant Medicago Sativa Linn on soil nitrogen nutrient. Chin J Eco-Agric. 9:82–84.
  • Liu Y, Huang YM, Zeng QC. 2016. Soil bacterial communities under different vegetation types in the loess plateau. Environ Sci. 37(10):3931–3938.
  • Liu S, Hu B, He Z, Zhang B, Tian G, Zheng P, Fang F. 2015. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Appl Microbiol Biotechnol. 99(20):8587–8596. doi:10.1007/s00253-015-6750-7.
  • Liu Z, Lan J, Li W, Ma HB. 2023. Reseeding improved soil and plant characteristics of degraded alfalfa (Medicago sativa) grassland in loess hilly plateau region, China. Ecol Eng. 190:106933. doi:10.1016/j.ecoleng.2023.106933.
  • Liu MG, Wu XJ, Yang HM. 2022. Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China. Arg Water Manage. 260:107316. doi:10.1016/j.agwat.2021.107316.
  • Lu L, Han WY, Zhang JB, Wu YC, Wang BZ, Lin XG, Zhu JG, Cai ZC, Jia ZJ. 2012. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. Int Soc Microb Ecol. 6(10):1978–1984. doi:10.1038/ismej.2012.45.
  • Luo ZZ, Niu YN, Li LL, Cai LQ, Zhang RZ, Xie JH. 2016. Response of soil physical properties to alfalfa growth years in the Western Loess Plateau. Chin J Eco-Agric. 24:1500–1507.
  • Miao XR, Sun YM, Yu L, Ma CH, Zhang QB. 2019. Effects of nitrogen and phosphorus fertilizer rate on hay yield and nutritional quality of alfalfa under drip irrigation. Acta Hortic Sin. 28:55–66.
  • Pajares S, Bohannan BJ. 2016. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol. 7:1045. doi:10.3389/fmicb.2016.01045.
  • Park SJ, Park BJ, Rhee SK. 2008. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles. 12(4):605–615. doi:10.1007/s00792-008-0165-7.
  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ. 2001. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol. 67(5):2255–2262. doi:10.1128/AEM.67.5.2255-2262.2001.
  • Pourbabaee AA, Khazaei M, Alikhani HA, Emami S. 2021. Root nodulation of alfalfa by Ensifer meliloti in petroleum contaminated soil. Rhizosphere. 17:100305. doi:10.1016/j.rhisph.2021.100305.
  • Qin HL, Yuan HZ, Zhang H, Zhu YJ, Yin CM, Tan ZJ, Wu JS, Wei WX. 2013. Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3−-N loss in acidic soil of sloped land. Biol Fertil Soils. 49(6):767–776. doi:10.1007/s00374-012-0767-1.
  • Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 63(12):4704–4712. doi:10.1128/aem.63.12.4704-4712.1997.
  • Shi SL, Nan LL, Smith KF. 2017. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy. 7(1):1. doi:10.3390/agronomy7010001.
  • Shi Y, Zhang XY, Wang ZC, Xu ZW, He CG, Sheng LX, Liu HY, Wang ZQ. 2021. Shift in nitrogen transformation in peatland soil by nitrogen inputs. Sci Total Environ. 764:142924. doi:10.1016/j.scitotenv.2020.142924.
  • Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Appl Environ Microbiol. 85(22):e02103–19. doi:10.1128/AEM.02103-19.
  • Song X, Fang C, Yuan ZQ, Li FM. 2021. Long-term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment. Front Environ Sci. 9:649346. doi:10.3389/fenvs.2021.649346.
  • Su Y, Wang WD. 2017. Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in North China. Acta Scientiae Circumstantiae. 37:3519–3527.
  • Tai XS, Mao WL, Liu GX, Chen T, Zhang W, Wu XK, Long HZ, Zhang BG, Zhang Y. 2013. High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China. Biogeosciences. 10(8):5589–5600. doi:10.5194/bg-10-5589-2013.
  • Tian W, Sun Q, Xu D, Zhang Z, Chen D, Li C, Shen Q, Shen B. 2013. Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. Int Biodeterior Biodegradation. 78:58–66. doi:10.1016/j.ibiod.2012.12.008.
  • Wang W, Cheng ZG, Li MY, Wang BZ, Li JY, Su YZ, Batool A, Xiong YC. 2020. Increasing periods after seeding under twice-annually harvested alfalfa reduces soil carbon and nitrogen stocks in a semiarid environment. Land Degrad Dev. 31(18):2872–2882. doi:10.1002/ldr.3592.
  • Wang H, Su J, Zheng T, Yang X. 2015. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soils Sediments. 15:1212–1223. doi:10.1007/s11368-015-1074-x.
  • Wang SP, Zhou GS, Lu YC, Zou JJ. 2002. Distribution of soil carbon, nitrogen and phosphorus along Northeast China Transect (NECT) and their relationships with climatic factors. Chinese J Plant Ecol. 26:513–517.
  • Wan R, Yang YY, Sun WM, Wang Z, Xie SG. 2014. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources. Environ Sci Pollut Res. 21(4):3175–3181. doi:10.1007/s11356-013-2268-7.
  • Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, Wilden B, de Groot GA, Amacker N, Kowalchuk GA, et al. 2021. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 151:106438. doi:10.1016/j.envint.2021.106438.
  • Yang T, Lupwayi N, Marc SA, Siddique KHM, Bainard LD. 2021. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Glob Ecol Conserv. 27:e01521. doi:10.1016/j.gecco.2021.e01521.
  • Yan LL, Liu C, Zhang YD, Liu S, Zhang Y. 2021. Effects of C/N ratio variation in swine biogas slurry on soil dissolved organic matter: content and fluorescence characteristics. Ecotoxicol Environ Saf. 209:111804. doi:10.1016/j.ecoenv.2020.111804.
  • Yu TF, Lin F, Liu XJ, Wang XW. 2020. Recovery role in soil structural, carbon and nitrogen properties of the conversion of vegetable land to alfalfa land in northwest China. J Soil Sci Plant Nutr. 20(3):1366–1377. doi:10.1007/s42729-020-00218-w.
  • Zhang X, Hu WG, Jin XT, Chen T, Niu YH. 2021. Diversity of soil nitrogen-fixing bacteria in the rhizosphere and non-rhizosphere soils of Ebinur Lake Wetland. Arch Microbiol. 203(7):3919–3932. doi:10.1007/s00203-021-02363-x.
  • Zhang XM, Liu W, Schioter M, Zhang GM, Chen QS, Huang JH, Li LH, Elser JJ, Han XG. 2013. Response of the abundance of key soil microbial nitrogen-cycling genes to multifactorial global change. PLoS One. 8(10):e76500. doi:10.1371/journal.pone.0076500.
  • Zhang YQ, Ma X, Luo ZZ, Niu YN, Li LL, Cai LQ, Xie JH. 2020. Effects of years of alfalfa planting on nitrification potential and abundance of soil ammonia oxidation microorganisms. Agric Res Arid Areas. 38:39–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.